0000000001034291

AUTHOR

Katherine E. Macarthur

showing 1 related works from this author

Simultaneous photonic and excitonic coupling in spherical quantum dot supercrystals

2020

Semiconductor nanocrystals, or quantum dots (QDs), simultaneously benefit from inexpensive low-temperature solution processing and exciting photophysics, making them the ideal candidates for next-generation solar cells and photodetectors. While the working principles of these devices rely on light absorption, QDs intrinsically belong to the Rayleigh regime and display optical behavior limited to electric dipole resonances, resulting in low absorption efficiencies. Increasing the absorption efficiency of QDs, together with their electronic and excitonic coupling to enhance charge carrier mobility, is therefore of critical importance to enable practical applications. Here, we demonstrate a ge…

Materials scienceGeneral Physics and AstronomyPhotodetectortransient absorptionPhysics::OpticsSupraparticlesquantum dots02 engineering and technology010402 general chemistry01 natural sciencesArticlesymbols.namesakeCondensed Matter::Materials SciencenanocrystalsMie theoryGeneral Materials ScienceRayleigh scatteringAbsorption (electromagnetic radiation)BiexcitonTransient absorptionsupercrystalsbusiness.industryCondensed Matter::OtherQuantum dotsSupercrystalsGeneral EngineeringMetamaterialself-assemblySelf-assembly021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect0104 chemical sciencesNanocrystalsNanocrystalsupraparticlesQuantum dotddc:540symbolsOptoelectronicsPhotonics0210 nano-technologybusinessPhysical Chemistry and Soft Matter
researchProduct