0000000001034334

AUTHOR

Françoise Devillard

showing 3 related works from this author

Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developme…

2019

BackgroundBalanced chromosomal rearrangements associated with abnormal phenotype are rare events, but may be challenging for genetic counselling, since molecular characterisation of breakpoints is not performed routinely. We used next-generation sequencing to characterise breakpoints of balanced chromosomal rearrangements at the molecular level in patients with intellectual disability and/or congenital anomalies.MethodsBreakpoints were characterised by a paired-end low depth whole genome sequencing (WGS) strategy and validated by Sanger sequencing. Expression study of disrupted and neighbouring genes was performed by RT-qPCR from blood or lymphoblastoid cell line RNA.ResultsAmong the 55 pat…

AdultMale0301 basic medicineCandidate geneAdolescentDNA Copy Number VariationsDevelopmental Disabilities030105 genetics & heredityGenomeTranslocation GeneticStructural variationChromosome BreakpointsStructure-Activity RelationshipYoung Adult03 medical and health sciencessymbols.namesakeposition effectGeneticsHumansChildGeneGenetic Association StudiesGenetics (clinical)Paired-end tagComputingMilieux_MISCELLANEOUSchromosomal rearrangementsChromosome AberrationsGene RearrangementWhole genome sequencingGeneticsSanger sequencingwhole genome sequencingbiologystructural variationInfantNFIXPhenotype030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsintellectual disabilityChild Preschoolbiology.proteinsymbolsFemaleBiomarkers
researchProduct

Large national series of patients with Xq28 duplication involving MECP2: Delineation of brain MRI abnormalities in 30 affected patients.

2016

International audience; Xq28 duplications encompassing MECP2 have been described in male patients with a severe neurodevelopmental disorder associated with hypotonia and spasticity, severe learning disability, stereotyped movements, and recurrent pulmonary infections. We report on standardized brain magnetic resonance imaging (MRI) data of 30 affected patients carrying an Xq28 duplication involving MECP2 of various sizes (228 kb to 11.7 Mb). The aim of this study was to seek recurrent malformations and attempt to determine whether variations in imaging features could be explained by differences in the size of the duplications. We showed that 93% of patients had brain MRI abnormalities such …

0301 basic medicineMalePathologyMethyl-CpG-Binding Protein 2[SDV]Life Sciences [q-bio]030105 genetics & heredityCorpus callosumLateral ventricles0302 clinical medicineGene DuplicationIKBKGFLNAChildGenetics (clinical)GeneticsBrain Diseasesmedicine.diagnostic_testMiddle AgedPrognosisMagnetic Resonance ImagingHypotonia3. Good healthPedigree[SDV] Life Sciences [q-bio]medicine.anatomical_structurePhenotypeXq28 duplicationChild PreschoolFemalemedicine.symptomAdultmedicine.medical_specialtycongenital hereditary and neonatal diseases and abnormalitiesAdolescentGenotypeBiologygenotype-phenotype correlationWhite matter03 medical and health sciencesYoung AdultGeneticsmedicineHumansGenetic Association StudiesChromosomes Human X[ SDV ] Life Sciences [q-bio]Infant NewbornInfantMagnetic resonance imagingHyperintensitynervous system diseasesMental Retardation X-LinkedMECP2 gene030217 neurology & neurosurgeryAmerican journal of medical genetics. Part A
researchProduct

De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis di…

2020

International audience; Purpose: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown.Methods: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes.Results: Of 20 individuals, 14 showed…

Foot DeformitiesFoot Deformities Congenital[SDV]Life Sciences [q-bio]BiologyBlepharophimosisSettore MED/03 - GENETICA MEDICAHypotrichosisChromatin remodeling03 medical and health sciencesCongenital0302 clinical medicineNeurodevelopmental disorderIntellectual DisabilityIntellectual disabilitySMARCA2medicineHumansGeneGenetics (clinical)030304 developmental biologyGenetics0303 health sciencesBISFaciesmedicine.diseaseBlepharophimosisPhenotypeneurodevelopmental disorderPhenotypeNicolaides–Baraitser syndromeintellectual disabilityDNA methylationNicolaides–Baraitser syndrome030217 neurology & neurosurgeryTranscription FactorsGenetics in medicine : official journal of the American College of Medical Genetics
researchProduct