0000000001034614

AUTHOR

A. Banu

showing 18 related works from this author

Simultaneous measurement of β-delayed proton and γ decay of 27P

2016

This is the first study of 27P to measure both the β-delayed proton and β-delayed γ decays. While no new proton groups in the astrophysically interesting energy region of 300–400 keV were observed, a new upper limit on the proton branching of 0.16% was estimated. Several new γ -ray lines were observed, mainly coming from the isobaric analog state in 27Si, which has been assigned a more accurate energy value of 6638(1) keV. peerReviewed

proton decaygamma decaybeta-delayed decayNuclear Experimentfosfori
researchProduct

Sub-Barrier Coulomb Excitation ofSn110and Its Implications for theSn100Shell Closure

2007

The first excited 2(+) state of the unstable isotope Sn-110 has been studied in safe Coulomb excitation at 2.82 MeV/u using the MINIBALL array at the REX-ISOLDE post accelerator at CERN. This is the first measurement of the reduced transition probability of this state using this method for a neutron deficient Sn isotope. The strength of the approach lies in the excellent peak-to-background ratio that is achieved. The extracted reduced transition probability, B(E2 : 0(+) -> 2(+)) 0.220 +/- 0.022e(2) b(2), strengthens the observation of the evolution of the B(E2) values of neutron deficient Sn isotopes that was observed recently in intermediate-energy Coulomb excitation of Sn-108. It implies …

PhysicsMass numberIsotope010308 nuclear & particles physicsShell (structure)Nuclear shell modelGeneral Physics and AstronomyCoulomb excitation7. Clean energy01 natural sciencesClosure (computer programming)Excited state0103 physical sciencesNeutronAtomic physicsNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Experimental study ofβ-delayed proton decay ofAl23for nucleosynthesis in novae

2011

The $\ensuremath{\beta}$-delayed $\ensuremath{\gamma}$ and proton decay of $^{23}\mathrm{Al}$ has been studied with an alternative detector setup at the focal plane of the momentum achromat recoil separator MARS at Texas A University. We could detect protons down to an energy of 200 keV and determine the corresponding branching ratios. Contrary to results of previous $\ensuremath{\beta}$-decay studies, no strong proton intensity from the decay of the isobaric analog state (IAS) of the $^{23}\mathrm{Al}$ ground state at ${E}_{x}=7803$ keV in $^{23}\mathrm{Mg}$ was observed. Instead we assign the observed low-energy group ${E}_{p,\mathrm{c}.\mathrm{m}.}=206$ keV to the decay from a state that…

Nuclear physicsPhysicsNuclear reactionNuclear and High Energy PhysicsProtonBranching fractionAstrophysics::High Energy Astrophysical PhenomenaDouble beta decayHadronAtomic physicsNucleonGround stateRadioactive decayPhysical Review C
researchProduct

The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics

2013

The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p,γ)25AI(β+v)25 Mg(p,γ)26Al, but this chain can be by-passed by another chain, 25Al(p, γ)26Si(p, γ)27P and it can also be destroyed directly. The reaction 26m Al (p, γ)27 Si* is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, through the…

PhysicsNuclear reactionHistoryProtonRed giantGamma rayNuclear astrophysicsIsotopes of siliconAtomic physicsBeta decayRadioactive decayComputer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct

First measurement of the 18O(p,α)15N cross section at astrophysical energies

2009

International audience; The 18O(p,α)15N reaction rate has been deduced by means of the Trojan horse method. For the first time the contribution of the 20 keV resonance has been directly evaluated, giving a value about 35% larger than the one in the literature. Moreover, the present approach has allowed to improve the accuracy by a factor 8.5, as it is based on the measured strength instead of spectroscopic measurements. The contribution of the 90 keV resonance has been also determined, which turned out to be of negligible importance to astrophysics.

History010308 nuclear & particles physicsChemistry[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR][PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex][PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]01 natural sciencesResonance (particle physics)Computer Science ApplicationsEducationNuclear physicsReaction rateCross section (physics)0103 physical sciencesAtomic physics010303 astronomy & astrophysics
researchProduct

Study of excited states of [sup 31]S through beta-decay of [sup 31]Cl for nucleosynthesis in ONe novae

2011

We have produced an intense and pure beam of 31Cl with the MARS Separator at the Texas A&M University and studied β‐decay of 31Cl by implanting the beam into a novel detector setup, capable of measuring β‐delayed protons and γ‐rays simultaneously. From our data, we have established decay scheme of 31Cl, found resonance energies with 1 keV precision, have measured its half‐life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.

Nuclear physicsPhysicsDecay schemeMass excessta114NucleosynthesisExcited stateIsobarResonanceAtomic physicsGround stateBeta decayAIP Conference Proceedings
researchProduct

Decay spectroscopy for nuclear astrophysics: β- and β-delayed proton decay

2012

In several radiative proton capture reactions important in novae and XRBs, the resonant parts play the capital role. We use decay spectroscopy techniques to find these resonances and study their properties. We have developed techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei produced and separated with the MARS recoil spectrometer of Texas A&M University. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. This allows us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measu…

Nuclear reactionPhysicsHistoryProtonProton decayAstrophysics::High Energy Astrophysical PhenomenaParticle detectorComputer Science ApplicationsEducationNuclear physicsNuclear astrophysicsProton emissionAtomic physicsNuclear ExperimentNucleonRadioactive decayJournal of Physics: Conference Series
researchProduct

A novel approach to measure the cross section of the 18O(p, α)15N resonant reaction in the 0-200 keV energy range

2009

The 18O(p, ?)15N reaction is of primary importance to pin down the uncertainties, due to nuclear physics input, affecting present-day models of asymptotic giant branch stars. Its reaction rate can modify both fluorine nucleosynthesis inside such stars and oxygen and nitrogen isotopic ratios, which allow one to constrain the proposed astrophysical scenarios. Thus, an indirect measurement of the low-energy region of the 18O(p, ?)15N reaction has been performed to access, for the first time, the range of relevance for astrophysical application. In particular, a full, high-accuracy spectroscopic study of the 20 and 90 keV resonances has been performed and the strengths deduced to evaluate the r…

Nuclear reactionstars: abundances7. Clean energy01 natural sciencesReaction rateNuclear physicsNucleosynthesis0103 physical sciencesAsymptotic giant branchAstrophysics::Solar and Stellar AstrophysicsNuclear Experiment010303 astronomy & astrophysicsnuclear reactionsPhysics010308 nuclear & particles physicsabundances[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]stars: AGB and post-AGB Online-only material: color figuresnucleosynthesisAstronomy and AstrophysicsAlpha particle[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]Charged particleStars13. Climate actionSpace and Planetary ScienceAtomic physicsDimensionless quantity
researchProduct

Very Low Energy Protons From the Beta Decay of Proton Rich Nuclei For Nuclear Astrophysics

2010

The MARS group at TAMU has developed a new experimental technique to measure very low energy protons from β-delayed proton-decay of proton-rich nuclei produced and separated with the MARS recoil spectrometer at TAMU. Recently we have investigated the β-delayed p-decays of 23Al [1], and 31Cl [2], and obtained information on the resonances in the 22Na(p,γ)23Mg and 30P(p,γ) 31S reactions, respectively. These reactions are important in explosive H-burning in Novae [3]. Recently an experiment looking at the β-delayed p-decay of 20Mg was also done in order to obtain information on resonances in the 19Ne(p,γ)20Na reaction. A simple setup consisting of a telescope made of a thin double sided Si str…

PhysicsNuclear physicsNuclear reactionProtonSpectrometerNuclear astrophysicsGamma rayAtomic physicsParticle detectorRadioactive decaySemiconductor detectorAIP Conference Proceedings
researchProduct

New High-Precision Measurement of the Reaction Rate of the 18O(p, α)15N Reaction via THM

2008

The 18O(p,alpha)15N reaction rate has been extracted by means of the Trojan-Horse method. For the first time the contribution of the 20-keV peak has been directly evaluated, giving a value about 35% larger than previously estimated. The present approach has allowed to improve the accuracy of a factor 8.5, as it is based on the measured strength instead of educated guesses or spectroscopic measurements. The contribution of the 90-keV resonance has been determined as well, which turned out to be of negligible importance to astrophysics.

PhysicsNuclear reactionabundances[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]InstrumentationAnalytical chemistryResonanceFOS: Physical sciencesnucleosynthesisAstronomy and Astrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex][PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]01 natural sciences3. Good healthReaction rateAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science0103 physical sciences010306 general physics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)nuclear reactions
researchProduct

Studies of astrophysically interesting nucleus23Al

2010

We have studied the β-delayed proton decay of 23Al with a novel detector setup at the focal plane of the MARS separator at the Texas A&M University to resolve existing controversies about the proton branching of the IAS in 23Mg and to determine the absolute proton branchings by combining our results to the latest βγ-decay data. We have made also a high precision mass measurement of the ground state of 23Al to establish more accurate proton separation energy of 23Al. Here the description of the used techniques along with preliminary results of the experiments are given.

PhysicsHistoryProton decayDetectorMars Exploration ProgramMass measurementComputer Science ApplicationsEducationNuclear physicsCardinal pointmedicine.anatomical_structuremedicineHigh Energy Physics::ExperimentGround stateNucleusJournal of Physics: Conference Series
researchProduct

Sn108studied with intermediate-energy Coulomb excitation

2005

The unstable neutron-deficient Sn-108 isotope has been studied in inverse kinematics by intermediate-energy Coulomb excitation using the RISING/FRS experimental setup at GSI. This is the highest Z nucleus studied so far with this method. Its reduced transition probability B (E2;0(g.s.)(+)-> 2(1)(+)) has been measured for the first time. The extracted B(E2) value of 0.230(57)e(2) b(2) has been determined relative to the known value in the stable Sn-112 isotope. The result is discussed in the framework of recent large-scale shell model calculations performed with realistic effective interactions. The roles of particle-hole excitations of the Sn-100 core and of the Z=50 shell gap for the E2 po…

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicsNuclear shell modelShell (structure)Coulomb excitationPolarization (waves)01 natural sciencesCore (optical fiber)medicine.anatomical_structure0103 physical sciencesmedicineNeutronAtomic physicsNuclear Experiment010306 general physicsNucleusPhysical Review C
researchProduct

β-decay of [sup 23]Al and nova nucleosynthesis

2010

We have studied the β‐decay of 23Al with a novel detector setup at the focal plane of the MARS separator at the Texas A&M University to resolve existing controversies about the proton intensities of the IAS in 23Mg and to determine the absolute proton branching ratios by combining our results to the latest γ‐decay data. Experimental technique, results and the relevance for nova nucleosynthesis are discussed.

PhysicsNuclear physicsProtonNucleosynthesisBranching fractionDouble beta decayHadronGamma rayHigh Energy Physics::ExperimentAstrophysicsNucleonRadioactive decayAIP Conference Proceedings
researchProduct

Implantation-decay station for low-energy proton measurements

2013

Abstract We have built an implantation-decay station for β - delayed proton and α decay studies at the focal plane of the Momentum Achromat Recoil Spectrometer (MARS) at the Cyclotron Institute of Texas A&M University. Energetic secondary beams with a small momentum spread are stopped in a controlled manner into a very thin silicon strip detector. In addition, high-purity germanium detectors are installed for γ ray detection. Here we give a description of the setup and the observed performance down to E p ≈ 200 keV using implanted 23 Al and 31 Cl sources.

PhysicsNuclear and High Energy PhysicsSiliconProtonSpectrometerPhysics::Instrumentation and DetectorsDetectorCyclotronchemistry.chemical_elementGermaniumlaw.inventionMomentumNuclear physicsRecoilchemistrylawHigh Energy Physics::ExperimentNuclear ExperimentInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Spectroscopy of nuclei approaching the proton drip-line using a secondary-fragmentation technique with the RISING detector array

2005

An experiment utilizing a double fragmentation reaction was performed to study isobaric analogue states in A similar to 50 nuclei approaching the proton drip-line. gamma-ray spectroscopy will be used to identify excited states in the neutron-deficient nuclei produced in the second fragmentation reaction. Excited state level schemes will be obtained, through comparison with states in their well-known mirror partners, along with information on Coulomb effects through measurements of the Coulomb energy differences between isobaric analogue excited states. The validity of isospin symmetry for nuclei approaching the proton drip-line can also be investigated and the information gained will aid in…

PhysicsNuclear and High Energy PhysicsProtonElectric potential energyNuclear TheoryNuclear physicsExcited stateIsospinCoulombIsobaric processNeutronAtomic physicsNuclear ExperimentSpectroscopyJournal of Physics G: Nuclear and Particle Physics
researchProduct

High accuracy [sup 18]O(p,α)[sup 15]N reaction rate in the 8⋅10[sup 6]–5⋅10[sup 9] K temperature range

2011

The 18O(p,α)15N reaction is of great importance in several astrophysical scenarios, as it influences the production of key isotopes such as 19F, 18O and 15N. In this work, a high accuracy 18O(p,α)15N reaction rate is proposed, based on the simultaneous fit of direct measurements and of the results of a new Trojan Horse experiment. In particular, we have focused on the study of the broad 660 keV 1/2+ resonance. Since Γ∼100–300 keV, it strongly influences the nearly‐zero‐energy region of the cross section by means of the low‐energy tail of the resonant contribution and dominates the cross section at higher energies. Here we provide a factor of 2 larger reaction rate above T∼0.5 109 K based ov…

Chemical kineticsNuclear reactionReaction rateNuclear physicsCross section (physics)NucleosynthesisChemistryResonanceAlpha particleAtomic physicsCharged particleAIP Conference Proceedings
researchProduct

The beta-delayed proton and gamma decay of 27P for nuclear astrophysics

2013

The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p, γ) 25Al(β +ν) 25Mg(p, γ) 26Al, but this chain can be by-passed by another chain, 25Al(p, γ) 26Si(p, γ) 27P and it can also be destroyed directly. The reaction 26mAl(p, γ) 27Si∗ is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, throug…

nuclear astro-physicsindirect methodsdaughter nucleusproduction ofresonant capturehelium-burningreaction chainslow-energy protons
researchProduct

Horizons: Nuclear Astrophysics in the 2020s and Beyond

2022

Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated.We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field…

High Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy PhysicsNuclear TheoryComputingMethodologies_SIMULATIONANDMODELINGastrofysiikkaStarke Wechselwirkung und exotische Kerne – Abteilung BlaumWhite PaperFOS: Physical sciencesReviewtutkimustoimintatutkimuskohteet530Nuclear Theory (nucl-th)Astrophysics - Solar and Stellar AstrophysicsNuclear astrophysicsddc:530Nuclear Experiment (nucl-ex)ydinfysiikkaAstrophysics - High Energy Astrophysical PhenomenaNuclear ExperimenttiedeyhteisötSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct