An Efficient Convolutional Neural Network with Transfer Learning for Malware Classification
Rising prevalence of malicious software (malware) attacks represent a serious threat to online safety in the modern era. Malware is a threat to anyone who uses the Internet since it steals data and causes damage to computer systems. In addition, the exponential growth of malware hazards that affect many computer users, corporations, and governments has made malware detection, a popular issue in academic study. Current malware detection methods are slow and ineffectual because they rely on static and dynamic analysis of malware signatures and behavior patterns to detect unknown malware in real-time. Thus, this paper discusses the role of deep convolution neural networks in malware classifica…