0000000001037172

AUTHOR

E. Tognelli

showing 3 related works from this author

Dynamical masses of the low-mass stellar binary AB Doradus B

2015

Context. ABDoradus is the main system of the ABDoradus moving group. It is a quadruple system formed by two widely separated binaries of pre-main-sequence (PMS) stars: ABDor A/C and ABDor Ba/Bb. The pair ABDor A/C has been extensively studied and its dynamical masses have been determined with high precision, thus making of ABDor C a benchmark for calibrating PMS stellar models. If the orbit and dynamical masses of the pair ABDor Ba/Bb can be determined, they could not only play a similar role to that of ABDor C in calibrating PMS models, but would also help to better understand the dynamics of the whole ABDoradus system. Aims. We aim to determine the individual masses of the pair ABDor Ba/B…

Orbital elementsPhysicsAstrofísica[PHYS]Physics [physics]InfraredFOS: Physical sciencesBinary numberAstronomy and AstrophysicsContext (language use)AstrophysicsStarsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceVery-long-baseline interferometryOrbit (dynamics)AstronomiaLow Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Solar and Stellar Astrophysics (astro-ph.SR)ComputingMilieux_MISCELLANEOUS
researchProduct

The Gaia-ESO Survey: Structural and dynamical properties of the young cluster Chamaeleon i

2017

Investigating the physical mechanisms driving the dynamical evolution of young star clusters is fundamental to our understanding of the star formation process and the properties of the Galactic field stars. The young (~2 Myr) and partially embedded cluster Chamaeleon I is one of the closest laboratories for the study of the early stages of star cluster dynamics in a low-density environment. The aim of this work is to study the structural and kinematical properties of this cluster combining parameters from the high-resolution spectroscopic observations of the Gaia-ESO Survey with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion …

astro-ph.SRStellar populationopen clustersand associations: individual: Chamaeleon IIndividual: Chamaeleon I [Open clusters and associations]Open clusters and associations: Individual: Chamaeleon I; Stars: Kinematics and dynamics; Stars: Pre-main sequence; Techniques: Spectroscopicastro-ph.GAstars: kinematics and dynamicsFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstars: pre-main sequence01 natural sciencesVirial theoremKinematics and dynamics [Stars]Stars: Kinematics and dynamic0103 physical sciencesCluster (physics)Mass segregationAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsStellar evolutionQCSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsQBPhysicsPre-main sequence [Stars]open clusters and associations: individual: Chamaeleon I010308 nuclear & particles physicsVelocity dispersionAstronomy and AstrophysicsAstrophysics - Astrophysics of Galaxies[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]stars: kinematics and dynamics; stars: pre-main sequence; open clustersand associations: individual: Chamaeleon I; techniques: spectroscopicStar clusterAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics::Earth and Planetary AstrophysicsSpectroscopic [Techniques]Equivalent widthtechniques: spectroscopicQB799
researchProduct

Gaia-ESO Survey: Cha I members

2017

Investigating the physical mechanisms driving the dynamical evolution of young star clusters is fundamental to our understanding of the star formation process and the properties of the Galactic field stars. The young (~2Myr) and partially embedded cluster Chamaeleon I is one of the closest laboratories to study the early stages of star cluster dynamics in a low-density environment. The aim of this work is to study the structural and kinematical properties of this cluster combining parameters from the high-resolution spectroscopic observations of the Gaia-ESO Survey with data from the literature. Our main result is the evidence of a large discrepancy between the velocity dispersion ({sigma}_…

observational astronomyOpen star clustersEffective temperatureAstrophysics and AstronomyRadial velocityExoplanet AstronomyStellar AstronomyPhysicsAstrophysics::Solar and Stellar AstrophysicsStellar massesAstrophysics::Cosmology and Extragalactic AstrophysicsNatural SciencesAstrophysics::Galaxy Astrophysics
researchProduct