0000000001037468

AUTHOR

Francesca Sardina

showing 2 related works from this author

COX-2-dependent and COX-2-independent mode of action of celecoxib in human liver cancer cells.

2011

Celecoxib (Celebrex((R)), Pfizer) is a selective cyclooxygenase-2 (COX-2) inhibitor with chemopreventive and antitumor effects. However, it is now well known that celecoxib has several COX-2-independent activities. To better understand COX-2-independent molecular mechanisms underlying the antitumor activity of celecoxib, we investigated the expression profile of the celecoxib-treated COX-2-positive (Huh7) and COX-2-negative (HepG2) liver cancer cell lines, using microarray analysis. Celecoxib treatment resulted in significantly altered expression levels of 240 and 403 transcripts in Huh7 and HepG2 cells, respectively. Confirmation of the microarray results was performed for selected genes b…

Programmed cell deathCarcinoma HepatocellularMicroarrayTranscription GeneticHepatocellular carcinomaCell SurvivalAntineoplastic AgentsPharmacologyBiologyBiochemistryCell Line TumorGeneticsmedicineHumansMode of actionneoplasmsMolecular BiologySulfonamidesCyclooxygenase 2 InhibitorsCell growthMicroarray analysis techniquesGene Expression ProfilingLiver NeoplasmsCOX-2Gene expression profilingGene Expression Regulation NeoplasticCell cultureCelecoxibCyclooxygenase 2CelecoxibMolecular MedicinePyrazolesBiotechnologymedicine.drugSignal TransductionOmics : a journal of integrative biology
researchProduct

The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress

2015

The MRE11/RAD50/NBS1 (MRN) complex is a major sensor of DNA double strand breaks, whose role in controlling faithful DNA replication and preventing replication stress is also emerging. Inactivation of the MRN complex invariably leads to developmental and/or degenerative neuronal defects, the pathogenesis of which still remains poorly understood. In particular, NBS1 gene mutations are associated with microcephaly and strongly impaired cerebellar development, both in humans and in the mouse model. These phenotypes strikingly overlap those induced by inactivation of MYCN, an essential promoter of the expansion of neuronal stem and progenitor cells, suggesting that MYCN and the MRN complex migh…

0301 basic medicineDNA ReplicationTranscription GeneticDNA damageDNA repairDNA-Binding ProteinCell Cycle ProteinsBiology03 medical and health sciencesMRE11 Homologue ProteinCell Cycle ProteinStrand-Break Repair; N-Myc; Dna-Replication; Human Neuroblastoma; Feingold-Syndrome; C-Myc; Mre11-Rad50-Nbs1 Complex; Targeted Disruption; Genomic Instability; Embryonic LethalityHumansProgenitor cellMolecular BiologyneoplasmsCells CulturedNuclear ProteinCell ProliferationGeneticsNeuronsOncogene ProteinsOriginal PaperMRE11 Homologue ProteinN-Myc Proto-Oncogene ProteinCell growthDNA Repair EnzymeDNA replicationOncogene ProteinNuclear ProteinsCell BiologyNeuronCell biologyAcid Anhydride HydrolasesDNA-Binding Proteins030104 developmental biologyDNA Repair EnzymesMRN complexGene Expression RegulationRad50HumanCell Death and Differentiation
researchProduct