0000000001043950
AUTHOR
Julia Bartsch
sj-pdf-1-ajs-10.1177_03635465221112095 – Supplemental material for Predicting ACL Injury Using Machine Learning on Data From an Extensive Screening Test Battery of 880 Female Elite Athletes
Supplemental material, sj-pdf-1-ajs-10.1177_03635465221112095 for Predicting ACL Injury Using Machine Learning on Data From an Extensive Screening Test Battery of 880 Female Elite Athletes by Susanne Jauhiainen, Jukka-Pekka Kauppi, Tron Krosshaug, Roald Bahr, Julia Bartsch and Sami Äyrämö in The American Journal of Sports Medicine
Predicting ACL Injury Using Machine Learning on Data From an Extensive Screening Test Battery of 880 Female Elite Athletes
Background: Injury risk prediction is an emerging field in which more research is needed to recognize the best practices for accurate injury risk assessment. Important issues related to predictive machine learning need to be considered, for example, to avoid overinterpreting the observed prediction performance. Purpose: To carefully investigate the predictive potential of multiple predictive machine learning methods on a large set of risk factor data for anterior cruciate ligament (ACL) injury; the proposed approach takes into account the effect of chance and random variations in prediction performance. Study Design: Case-control study; Level of evidence, 3. Methods: The authors used 3-dime…