0000000001044048

AUTHOR

Udi Makov

0000-0002-7150-8544

showing 1 related works from this author

Additive noise and multiplicative bias as disclosure limitation techniques for continuous microdata: A simulation study

2004

This paper focuses on a combination of two disclosure limitation techniques, additive noise and multiplicative bias, and studies their efficacy in protecting confidentiality of continuous microdata. A Bayesian intruder model is extensively simulated in order to assess the performance of these disclosure limitation techniques as a function of key parameters like the variability amongst profiles in the original data, the amount of users prior information, the amount of bias and noise introduced in the data. The results of the simulation offer insight into the degree of vulnerability of data on continuous random variables and suggests some guidelines for effective protection measures.

Computer scienceMultiplicative functionBayesian probabilityGeneral Engineeringcomputer.software_genreComputer Science ApplicationsOriginal dataComputational MathematicsMicrodata (HTML)Simulated dataConfidentialityData miningRandom variablecomputerPrior information
researchProduct