0000000001044671

AUTHOR

István T. Horváth

showing 2 related works from this author

Searching for differences in Swift's intermediate GRBs

2010

Gamma-ray bursts are usually classified through their high-energy emission into short-duration and long-duration bursts, which presumably reflect two different types of progenitors. However, it has been shown on statistical grounds that a third, intermediate population is needed in this classification scheme, although an extensive study of the properties of this class has so far not been done. The large amount of follow-up studies generated during the Swift era allows us to have a suficient sample to attempt a study of this third population through the properties of their prompt emission and their afterglows. Our study is focused on a sample of GRBs observed by Swift during its first four y…

gamma-rays burst: generalSwiftPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studyCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstronomy and AstrophysicsClassification schemeAstrophysicsLight curveRedshiftFIS/05 - ASTRONOMIA E ASTROFISICASupernovaSpace and Planetary ScienceThin shellsAstrophysics - High Energy Astrophysical PhenomenaEjectaeducationcomputerAstrophysics - Cosmology and Nongalactic Astrophysicscomputer.programming_language
researchProduct

Detection of the high z GRB 080913 and its implications on progenitors and energy extraction mechanisms*

2010

We present multiwavelength observations of one of the most distant gamma-ray bursts detected so far, GRB080913. Based on these observations, we consider whether it could be classified as a short-duration GRB and discuss the implications for the progenitor nature and energy extraction mechanisms. Methods. Multiwavelength X-ray, near IR and millimetre observations were made between 20.7 h and ∼16.8 days after the event. Results. Whereas a very faint afterglow was seen at the 3.5m CAHA telescope in the nIR, the X-ray afterglow was clearly detected in both Swift and XMM-Newton observations. An upper limit is reported in the mm range. We have modeled the data assuming a collimated θ0 3◦ blast wa…

PhysicsRange (particle radiation)Event horizonAstrophysics (astro-ph)Cosmology: observationsFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysicsRedshiftAfterglowphotometric [techniques]techniques: photometricSpace and Planetary ScienceGRB 090423MillimeterGamma-ray burstobservations [Cosmology]stars: gamma-ray bursts: individual: GRB 080913Energy (signal processing)gamma-ray bursts: individual: GRB 080913 [stars]
researchProduct