0000000001048730

AUTHOR

Michele Veltri

Measurement of CP asymmetries in two-body B(s)0 -meson decays to charged pions and kaons

The time-dependent CP asymmetries in B0→π+π− and B0s→K+K− decays are measured using a data sample of p p collisions corresponding to an integrated luminosity of 3.0  fb−1, collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV. The same data sample is used to measure the time-integrated CP asymmetries in B0→K+π− and B0s→π+K− decays. The results are Cπ+π−=−0.34±0.06±0.01, Sπ+π−=−0.63±0.05±0.01, CK+K−=0.20±0.06±0.02, SK+K−=0.18±0.06±0.02, AΔΓK+K−=−0.79±0.07±0.10, AB0CP=−0.084±0.004±0.003, and AB0sCP=0.213±0.015±0.007, where the first uncertainties are statistical and the second systematic. Evidence for CP violation is found in the B0s→K+K− decay for the first time.

research product

Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.

research product

Measurement of the W boson mass

The W boson mass is measured using proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 1.7fb(-1) recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/p(T) distribution of a sample of W ->mu y decays and the phi* distribution of a sample of Z -> mu mu decays the W boson mass is determined to be

research product

Observation of Bc+→J/ψD(*)K(*) decays

A search for the decays B + c → J / ψ D ( * ) 0 K + and B + c → J / ψ D ( * ) + K * 0 is performed with data collected at the LHCb experiment corresponding to an integrated luminosity of 3     fb − 1 . The decays B + c → J / ψ D 0 K + and B + c → J / ψ D * 0 K + are observed for the first time, while first evidence is reported for the B + c → J / ψ D * + K * 0 and B + c → J / ψ D + K * 0 decays. The branching fractions of these decays are determined relative to the B + c → J / ψ π + decay. The B + c mass is measured, using the J / ψ D 0 K + final state, to be 6274.28 ± 1.40 ( stat ) ± 0.32 ( syst )     MeV / c 2 . This is the most precise single measurement of the B + c mass to date.

research product