0000000001049145

AUTHOR

Giacomo Ortona

showing 8 related works from this author

Production of Muons from Heavy Flavor Decays at Forward Rapidity inppand Pb-Pb Collisions atsNN=2.76  TeV

2012

The ALICE Collaboration has measured the inclusive production of muons from heavy-flavor decays at forward rapidity, 2.5 < y < 4, in pp and Pb-Pb collisions at root s(NN) = 2.76 TeV. The p(t)-differential inclusive cross section of muons from heavy-flavor decays in pp collisions is compared to perturbative QCD calculations. The nuclear modification factor is studied as a function of p(t) and collision centrality. A weak suppression is measured in peripheral collisions. In the most central collisions, a suppression of a factor of about 3-4 is observed in 6 < p(t) < 10 GeV/c. The suppression shows no significant p(t) dependence.

PhysicsParticle physicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyPerturbative QCDModification factor01 natural sciencesNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsFlavorPhysical Review Letters
researchProduct

Azimuthal anisotropy ofD-meson production in Pb-Pb collisions atsNN=2.76TeV

2014

The production of the prompt charmed mesons D0, D+, and D*+ relative to the reaction plane was measured in Pb-Pb collisions at a center-of-mass energy per nucleon-nucleon collision of √sNN=2.76TeV with the ALICE detector at the CERN Large Hadron Collider. D mesons were reconstructed via their hadronic decays at central rapidity in the transverse-momentum (p_T) interval 2–16 GeV/c. The azimuthal anisotropy is quantified in terms of the second coefficient v2 in a Fourier expansion of the D-meson azimuthal distribution and in terms of the nuclear modification factor R_AA, measured in the direction of the reaction plane and orthogonal to it. The v2 coefficient was measured with three different …

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderMeson010308 nuclear & particles physicsPlane (geometry)Hadron01 natural sciences7. Clean energyNuclear physicsYield (chemistry)0103 physical sciencesD mesonHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsAnisotropyPhysical Review C
researchProduct

Alignment of the ALICE Inner Tracking System with cosmic-ray tracks

2010

ALICE (A Large Ion Collider Experiment) is the LHC (Large Hadron Collider) experiment devoted to investigating the strongly interacting matter created in nucleus-nucleus collisions at the LHC energies. The ALICE ITS, Inner Tracking System, consists of six cylindrical layers of silicon detectors with three different technologies; in the outward direction: two layers of pixel detectors, two layers each of drift, and strip detectors. The number of parameters to be determined in the spatial alignment of the 2198 sensor modules of the ITS is about 13,000. The target alignment precision is well below 10 micron in some cases (pixels). The sources of alignment information include survey measurement…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsperspectiveHigh Energy PhisicsDetector alignment and calibration methods (lasers sources particle-beams); Particle tracking detectors (Solid-state detectors); Instrumentation; Mathematical Physics01 natural sciences7. Clean energylaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawParticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Tracking detectors; High Energy Phisics; Heavy Ion PhysicsDetectors and Experimental TechniquesDetector alignment and calibration methodsNuclear ExperimentInstrumentationphysics.ins-detMathematical PhysicsdetectorsPhysicsLarge Hadron ColliderSolenoidal vector fieldPhysicsDetectorInstrumentation and Detectors (physics.ins-det)particle-beams)collisionsParticle tracking detectors (Solid-state detectors) ; Detector alignment and calibration methods (lasers ; sources ; particle-beams)collaboration; collisions; detector alignment and calibration methods (lasers; sources; particle-beams); detectors; particle tracking detectors (solid-state detectors); performance; perspective; quark-gluon plasmaColliding beam accelerators collisions Pb-Pb collisionsParticle tracking detectors (Solid-state detectors); Detector alignment and calibration methods (lasers sources particle-beams); QUARK-GLUON PLASMAperformancesourcesquark-gluon plasmaDetector alignment and calibration methodFOS: Physical sciencesCosmic ray114 Physical sciencesNuclear physicsTracking detectorsOpticsparticle tracking detectors (solid-state detectors)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsColliderPixel010308 nuclear & particles physicsbusiness.industryhep-exHeavy Ion Physicsdetector alignment and calibration methods (laserscollaborationQuark–gluon plasmaDetector alignment and calibration methods; Particle tracking detectorsALICE (propellant)business
researchProduct

Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb–Pb collisions at sNN=2.76 TeV

2013

The elliptic, v(2), triangular, v(3), and quadrangular, v(4), azimuthal anisotropic flow coefficients are measured for unidentified charged particles, pions, and (anti-)protons in Pb-Pb collisions at root S-NN = 2.76 TeV with the ALICE detector at the Large Hadron Collider. Results obtained with the event plane and four-particle cumulant methods are reported for the pseudo-rapidity range vertical bar eta vertical bar 8 GeV/c. The small p(T) dependence of the difference between elliptic flow results obtained from the event plane and four-particle cumulant methods suggests a common origin of flow fluctuations up to p(T) = 8 GeV/c. The magnitude of the (anti-)proton elliptic and triangular flo…

PhysicsNuclear and High Energy PhysicsParticle physicsMesonProton010308 nuclear & particles physicsElliptic flowHadron01 natural sciencesCharged particleNuclear physicsBaryonPionAntiproton0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Two-pion Bose-Einstein correlations inppcollisions ats=900  GeV

2010

We report on the measurement of two-pion correlation functions from pp collisions at root s = 900 GeV performed by the ALICE experiment at the Large Hadron Collider. Our analysis shows an increase of the Hanbury Brown-Twiss radius with increasing event multiplicity, in line with other measurements done in particle- and nuclear collisions. Conversely, the strong decrease of the radius with increasing transverse momentum, as observed at the Relativistic Heavy Ion Collider and at Tevatron, is not manifest in our data.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderMeson010308 nuclear & particles physicsNuclear TheoryHadronTevatronParticle acceleratorBose–Einstein correlations01 natural scienceslaw.inventionNuclear physicsPionlaw0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsRelativistic Heavy Ion ColliderPhysical Review D
researchProduct

Charged-Particle Multiplicity Density at Midrapidity in Central Pb-Pb Collisions atsNN=2.76  TeV

2010

The first measurement of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at a center-of-mass energy per nucleon pair root s(NN) = 2.76 TeV is presented. For an event sample corresponding to the most central 5% of the hadronic cross section, the pseudorapidity density of primary charged particles at midrapidity is 1584 +/- 4(stat) +/- 76(syst), which corresponds to 8.3 +/- 0.4(syst) per participating nucleon pair. This represents an increase of about a factor 1.9 relative to pp collisions at similar collision energies, and about a factor 2.2 to central Au-Au collisions at root s(NN) = 0.2 TeV. This measurement provides the first experimental constraint for models…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsNuclear TheoryHadronGeneral Physics and AstronomyElementary particle01 natural sciencesCharged particleBaryonNuclear physicsPseudorapidity0103 physical sciencesHigh Energy Physics::ExperimentRapidityNuclear Experiment010306 general physicsNucleonPhysical Review Letters
researchProduct

Neutron emission from electromagnetic dissociation of Pb nuclei at $\sqrt {s_{NN}} = 2.76$ TeV measured with the ALICE ZDC

2014

The ALICE Zero Degree Calorimeter system (ZDC) is composed of two identical sets of calorimeters, placed at opposite sides with respect to the interaction point, 114 meters away from it, complemented by two small forward electromagnetic calorimeters (ZEM). Each set of detectors consists of a neutron (ZN) and a proton (ZP) ZDC. They are placed at zero degrees with respect to the LHC axis and allow to detect particles emitted close to beam direction, in particular neutrons and protons emerging from hadronic heavy-ion collisions (spectator nucleons) and those emitted from electromagnetic processes. For neutrons emitted by these two processes, the ZN calorimeters have nearly 100% acceptance. Du…

PhysicsParticle physicsLarge Hadron ColliderInteraction pointProtonNeutron emissionPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaPhysicsQC1-999HadronNuclear Theory7. Clean energyCalorimeterNuclear physicsPhysics and Astronomy (all)NeutronHigh Energy Physics::ExperimentNuclear Physics - ExperimentNucleonNuclear Experiment
researchProduct

Observation of the rare B(s)(0) + decay from the combined analysis of CMS and LHCb data.

2015

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence.-- et al.

fundamental particleCompact Muon Solenoidstandard model flavor changing neutral currentsradioisotope decayB physicGaussian methodMU(+)MU(-)Temel Bilimler (SCI)rare decay [B/s0]Elementary particleATLAS DETECTOR12.15.MmÇOK DİSİPLİNLİ BİLİMLERRARE B-MESON DECAYS7000 GeV-cms8000 GeV-cmsSettore ING-INF/01 - Elettronica01 natural sciences7. Clean energyddc:0702 CHARGED LEPTONSscattering [p p]High energy physics ; Experimental particle physics ; LHC ; CMS ; Standard ModelQC[Anahtar Kelime Yok]Large Hadron ColliderMedicine (all); Multidisciplinarystandard3. Good healthHigh Energy Physics - PhenomenologyCERN LHC CollFIS/01 - FISICA SPERIMENTALEpriority journalHiggs bosonScience & Technology - Other TopicsPARTICLE PHYSICSmass spectrum [dimuon]Protonviolationcolliding beams [p p]physicschemical analyzerMesonModels beyond the standard modelprobabilitymesonelectromagnetic radiationB/s0 --> muon+ muon-Nuclear physicsbranching ratio: measured [B0]SEARCHLeptonic semileptonic and radiative decays of bottom mesonRARE B-MESON DECAYS; MINIMAL FLAVOR VIOLATION; LHC; CMS DETECTOR; LHCb DETECTOR; SEARCH; MU(+)MU(-); B-S(0); B-0;B-MESON DECAYS; MINIMAL FLAVOR VIOLATION; 2 CHARGED LEPTONS; ATLAS; DETECTOR; SEARCH; MU(+)MU(-); B-S(0); B-0; COLLIDER; PARTICLE010306 general physicsScience & TechnologyMuonMULTIDISCIPLINARY SCIENCES010308 nuclear & particles physicsBranching fractionMeson Bnull hypothesisDoğa Bilimleri GenelElementary particlesLARGE HADRON COLLIDERHEPp(p)over-bar collisionsNATURAL SCIENCES GENERALrare decay [B0]13.20.HeMINIMAL FLAVOR VIOLATIONchemical analysisprecisionB0 --> muon+ muon-Física de partículesExperimental particle physicsleptonic decay [B0]Physics::Instrumentation and DetectorsPhysics beyond the Standard ModelB-meson decays; p(p)over-bar collisions; branching fraction; root-s=1.96 tev; search; mu(+)mu(-); b-0; b-s(0); violation; modelsLarge Hadron Collider (LHC)High Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNeutral currentCOLLIDER[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]uncertainty12.60.-iFlavour Physicmass spectrometryPhysicsExperimental particleMultidisciplinaryCMSMedicine (all)Temel BilimlerSettore FIS/01 - Fisica SperimentaleB-meson decaysATLASLarge Hadron Collider beautybranching ratio: measured [B/s0]root-s=1.96 tevNatural Sciences (SCI)LHCNatural SciencesPARTICLEdata processingParticle Physics - Experimentchemical reactionParticle physicsbranching fractionNOPARTICLE PHYSICS; LARGE HADRON COLLIDER; CMS; LHCBmodelsLHCBExperimental particle; physics; data processing; electromagnetic field; electromagnetic radiation; fundamental particle; Gaussian method; physics; precision; chemical analysis; chemical analyzer; chemical reaction; elementary particle; Large Hadron Collider beauty; mass spectrometry; meson; null hypothesis; prediction; priority journal; probability; radioisotope decay; standard; uncertainty;B-MESON DECAYSelectromagnetic fieldTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYRare Decay0103 physical sciencesElectromagnetic fieldB-0elementary particleSDG 7 - Affordable and Clean EnergyDETECTORCompact Muon SolenoidMultidisipliner/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyLHCb DETECTORCMS LHC Meson B Rare DecayMinimal flavor violationpredictionLeptonsLHC-Bleptonic decay [B/s0]LHCbRare decayMedicine (all) MultidisciplinaryRARE B-MESON DECAYS; MINIMAL FLAVOR VIOLATION; LHC; CMS DETECTOR; LHCb DETECTOR; SEARCH; MU(+)MU(-); B-S(0); B-0B-S(0)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentExperimentsexperimental resultsCMS DETECTOR
researchProduct