0000000001053365
AUTHOR
Alain Chalifour
Image Segmentation and Object Extraction for Automatic Diatoms Classification
The diatoms are unicellular algae of great interest in paleontology, aquatic ecology, and forensic medicine, among others. Currently, there are more than 100 000 known species distributed in aquatic ecosystems. For that reason, there is a big interest in the automatic classification of diatom images, however, the preliminary process applied to isolate the diatom from the background is a complex task. In this paper, we propose a segmentation method and an object-extraction procedure to extract the diatom from the background. First, we binarize the image by searching the optimal threshold in the histogram based on its cumulative distribution function. Then we eliminate, under some spatial cri…
Computation of the area in the discrete plane: Green’s theorem revisited
International audience; The detection of the contour of a binary object is a common problem; however, the area of a region, and its moments, can be a significant parameter. In several metrology applications, the area of planar objects must be measured. The area is obtained by counting the pixels inside the contour or using a discrete version of Green's formula. Unfortunately, we obtain the area enclosed by the polygonal line passing through the centers of the pixels along the contour. We present a modified version of Green's theorem in the discrete plane, which allows for the computation of the exact area of a two-dimensional region in the class of polyominoes. Penalties are introduced and …