0000000001053639

AUTHOR

In So Kweon

Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment

International audience; Rotation estimation is a fundamental step for various robotic applications such as automatic control of ground/aerial vehicles, motion estimation and 3D reconstruction. However it is now well established that traditional navigation equipments, such as global positioning systems (GPSs) or inertial measurement units (IMUs), suffer from several disadvantages. Hence, some vision-based works have been proposed recently. Whereas interesting results can be obtained, the existing methods have non-negligible limitations such as a difficult feature matching (e.g. repeated textures, blur or illumination changes) and a high computational cost (e.g. analyze in the frequency domai…

research product

2D-3D Camera Fusion for Visual Odometry in Outdoor Environments

International audience; Accurate estimation of camera motion is very important for many robotics applications involving SfM and visual SLAM. Such accuracy is attempted by refining the estimated motion through nonlinear optimization. As many modern robots are equipped with both 2D and 3D cameras, it is both highly desirable and challenging to exploit data acquired from both modalities to achieve a better localization. Existing refinement methods, such as Bundle adjustment and loop closing, may be employed only when precise 2D-to-3D correspondences across frames are available. In this paper, we propose a framework for robot localization that benefits from both 2D and 3D information without re…

research product

Globally Optimal Line Clustering and Vanishing Point Estimation in Manhattan World

The projections of world parallel lines in an image intersect at a single point called the vanishing point (VP). VPs are a key ingredient for various vision tasks including rotation estimation and 3D reconstruction. Urban environments generally exhibit some dominant orthogonal VPs. Given a set of lines extracted from a calibrated image, this paper aims to (1) determine the line clustering, i.e. find which line belongs to which VP, and (2) estimate the associated orthogonal VPs. None of the existing methods is fully satisfactory because of the inherent difficulties of the problem, such as the local minima and the chicken-and-egg aspect. In this paper, we present a new algorithm that solves t…

research product