0000000001054193

AUTHOR

Jan P. Dekker

showing 4 related works from this author

Pigment organization and energy transfer dynamics in isolated photosystem I (PSI) complexes from Arabidopsis thaliana depleted of the PSI-G, PSI-K, P…

2002

Abstract Green plant photosystem I (PSI) consists of at least 18 different protein subunits. The roles of some of these protein subunits are not well known, in particular those that do not occur in the well characterized PSI complexes from cyanobacteria. We investigated the spectroscopic properties and excited-state dynamics of isolated PSI-200 particles from wild-type and mutant Arabidopsis thaliana plants devoid of the PSI-G, PSI-K, PSI-L, or PSI-N subunit. Pigment analysis and a comparison of the 5K absorption spectra of the various particles suggests that the PSI-L and PSI-H subunits together bind approximately five chlorophyll a molecules with absorption maxima near 688 and 667nm, that…

Time FactorsAbsorption spectroscopyProtein subunitPhotosynthetic Reaction Center Complex ProteinsArabidopsisLight-Harvesting Protein ComplexesBiophysicsBiologyPhotosystem Ichemistry.chemical_compoundPhase (matter)MoleculePlant ProteinsQuantitative Biology::BiomoleculesPhotosystem I Protein ComplexTemperaturePigments Biologicalbeta CaroteneFluorescenceKineticsCrystallographySpectrometry FluorescenceEnergy TransferchemistryChlorophyllThermodynamicsHigh Energy Physics::ExperimentAbsorption (chemistry)Research Article
researchProduct

Evidence for two spectroscopically different dimers of light-harvesting complex I from green plants

2000

A preparation consisting of isolated dimeric peripheral antenna complexes from green plant photosystem I (light-harvesting complex I or LHCI) has been characterized by means of (polarized) steady-state absorption and fluorescence spectroscopy at low temperatures. We show that this preparation can be described reasonably well by a mixture of two types of dimers. In the first dimer about 10% of all Q(y)() absorption of the chlorophylls arises from two chlorophylls with absorption and emission maxima at about 711 and 733 nm, respectively, whereas in the second about 10% of the absorption arises from two chlorophylls with absorption and emission maxima at about 693 and 702 nm, respectively. The…

ChlorophyllP700Photosystem IIPhotosystem I Protein ComplexChemistryDimerCircular DichroismPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesPhotosystem II Protein ComplexPhotochemistryPhotosystem IBiochemistryZea maysFluorescence spectroscopychemistry.chemical_compoundSpectrometry FluorescenceLight harvesting complex ISpectrophotometryAbsorption (chemistry)Protein Structure QuaternaryDimerization
researchProduct

Course of physical functioning and pain in osteoarthritis of the knee or hip: a systematic review

2014

musculoskeletal diseasesmedicine.medical_specialtyRheumatologyPhysical functioningbusiness.industryBiomedical EngineeringPhysical therapymedicineOrthopedics and Sports MedicineOsteoarthritisbusinessmedicine.diseaseOsteoarthritis and Cartilage
researchProduct

Functional rearrangement of the light-harvesting antenna upon state transitions in a green alga

2014

AbstractState transitions in the green alga Chlamydomonas reinhardtii serve to balance excitation energy transfer to photosystem I (PSI) and to photosystem II (PSII) and possibly play a role as a photoprotective mechanism. Thus, light-harvesting complex II (LHCII) can switch between the photosystems consequently transferring more excitation energy to PSII (state 1) or to PSI (state 2) or can end up in LHCII-only domains. In this study, low-temperature (77 K) steady-state and time-resolved fluorescence measured on intact cells of Chlamydomonas reinhardtii shows that independently of the state excitation energy transfer from LHCII to PSI or to PSII occurs on two main timescales of <15 ps and …

0106 biological sciencesPhotosystem IIEnergy transferBiophysicsLight-Harvesting Protein ComplexesphotosystemChlamydomonas reinhardtiiPhotosystem IPhotochemistry01 natural sciences03 medical and health sciencesstate transitionsgreen algaSDG 7 - Affordable and Clean Energy030304 developmental biologyPhotosystem0303 health sciencesenergy transfer/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energybiologyPhotosystem I Protein ComplexChemistryta1182Photosystem II Protein ComplexState (functional analysis)biology.organism_classificationFluorescenceCell BiophysicsAtomic physicsExcitationChlamydomonas reinhardtii010606 plant biology & botanyBiophysical journal
researchProduct