0000000001054384

AUTHOR

Aiwen Zhang

Synergistic enhancement via plasmonic nanoplate-bacteria-nanorod supercrystals for highly efficient SERS sensing of food-borne bacteria

Bio-sensing techniques utilizing metallic nanoparticles as a probe have gained more and more attention and play today an important role in the detection of bacteria. To date, although several sensing materials have been tested, there is still a long way to go to achieve a fast, low-cost, ultrasensitive and multifunctional substrate suitable for a universal biosensor for detection of bacterial cells. Here, we report a novel probe design based on anisotropic plasmonic nanoparticles organized to a biocompatible 3D bio-inorganic scaffold, i.e., nanoplate-bacteria-nanorod supercrystals (NBNS) with extremely high surface-enhanced Raman spectroscopic (SERS) activity as a model of synergistic plasm…

research product

Core–Shell Nanorod Columnar Array Combined with Gold Nanoplate–Nanosphere Assemblies Enable Powerful In Situ SERS Detection of Bacteria

Development of a label-free ultrasensitive nanosensor for detection of bacteria is presented. Sensitive assay for Gram-positive bacteria was achieved via electrostatic attraction-guided plasmonic bifacial superstructure/bacteria/columnar array assembled in one step. Dynamic optical hotspots were formed in the hybridized nanoassembly under wet-dry critical state amplifying efficiently the weak vibrational modes of three representative food-borne Gram-positive bacteria, that is, Staphylococcus xylosus, Listeria monocytogenes, and Enterococcus faecium. These three bacteria with highly analogous Raman spectra can be effectively differentiated through droplet wet-dry critical SERS approach combi…

research product