Stationary models of magnetized viscous tori around a Schwarzschild black hole
We present stationary solutions of magnetized, viscous thick accretion disks around a Schwarzschild black hole. We assume that the tori are not self-gravitating, are endowed with a toroidal magnetic field, and obey a constant angular momentum law. Our study focuses on the role of the black hole curvature in the shear viscosity tensor and in their potential combined effect on the stationary solutions. Those are built in the framework of a causality-preserving, second-order gradient expansion scheme of relativistic hydrodynamics in the Eckart frame description which gives rise to hyperbolic equations of motion. The stationary models are constructed by numerically solving the general relativis…