0000000001055004

AUTHOR

A. Di Galloway

showing 1 related works from this author

Effective field theory search for high-energy nuclear recoils using the XENON100 dark matter detector

2017

International audience; We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34  kg×224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6–240)  keVnr. The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and …

WIMP nucleon: scatteringParticle physicsdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsWIMP[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Dark matterchemistry.chemical_elementFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesNuclear physicsXENONXenonWIMPstatistical analysis0103 physical sciencesEffective field theoryDark Matter010306 general physicsS030UDMnucleus: recoilPhysicsCoupling constanteffective field theory: nonrelativistic010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for Astrophysicsdark matter: detectorchemistryWeakly interacting massive particlesDirect SearchHigh Energy Physics::ExperimentTPC[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]recoil: energyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct