MICROBIAL COMMUNITY CHANGES IN TNT SPIKED SOIL BIOREMEDIATION TRIAL USING BIOSTIMULATION, PHYTOREMEDIATION AND BIOAUGMENTATION
Trinitrotoluene (TNT), a commonly used explosive for military and industrial applications, can cause serious environmental pollution. 28-day laboratory pot experiment was carried out applying bioaugmentation using laboratory selected bacterial strains as inoculum, biostimulation with molasses and cabbage leaf extract, and phytoremediation using rye and blue fenugreek to study the effect of these treatments on TNT removal and changes in soil microbial community responsible for contaminant degradation. Chemical analyses revealed significant decreases in TNT concentrations, including reduction of some of the TNT to its amino derivates during the 28-day tests. The combination of bioaugmentation…
Phytoremediation and Plant-Assisted Bioremediation in Soil and Treatment Wetlands: A Review
Phytoremediation is a technology that is based on the combined action of plants and their associated microbial communities to degrade, remove, transform, or immobilize toxic compounds located in soils, sediments, and more recently in polluted ground water and wastewater in treatment wetlands. Phytoremediation could be used to treat different types of contaminants including petroleum hydrocarbons, chlorinated solvents, pesticides, explosives, heavy metals and radionuclides in soil and water. The advantages of phytoremediation compared to conventional techniques are lower cost, low disruptiveness to the environment, public acceptance, and potentiality to remediate various pollutants. The use …
Soil carbon quality and nitrogen fertilization structure bacterial communities with predictable responses of major bacterial phyla
Abstract Agricultural practices affect the soil ecosystem in multiple ways and the soil microbial communities represent an integrated and dynamic measure of soil status. Our aim was to test whether the soil bacterial community and the relative abundance of major bacterial phyla responded predictably to long-term organic amendments representing different carbon qualities (peat and straw) in combination with nitrogen fertilization levels and if certain bacterial groups were indicative of specific treatments. We hypothesized that the long-term treatments had created distinctly different ecological niches for soil bacteria, suitable for either fast-growing copiotrophic bacteria, or slow-growing…