0000000001061531

AUTHOR

P. J. De Visser

A Composite Phononic Crystal Design for Quasiparticle Lifetime Enhancement in Kinetic Inductance Detectors

A nanoscale phononic crystal filter (reflector) is designed for a kinetic inductance detector where the reflection band is matched to the quasiparticle recombination phonons with the aim to increase quasiparticle lifetime in the superconducting resonator. The inductor is enclosed by a 1 um wide phononic crystal membrane section with two simple hole patterns that each contain a partial spectral gap for various high frequency phonon modes. The phononic crystal is narrow enough for low frequency thermal phonons to propagate unimpeded. With 3D phonon scattering simulations over a 40 dB attenuation in transmitted power is found for the crystal, which was previously estimated to give a lifetime e…

research product

A Composite Phononic Crystal Design for Quasiparticle Lifetime Enhancement in Kinetic Inductance Detectors

A nanoscale phononic crystal filter (reflector) is designed for a kinetic inductance detector where the reflection band is matched to the quasiparticle recombination phonons with the aim to increase quasiparticle lifetime in the superconducting resonator. The inductor is enclosed by a 1-μm-wide phononic crystal membrane section with two simple hole patterns that each contain a partial spectral gap for various high-frequency phonon modes. The phononic crystal is narrow enough for low-frequency thermal phonons to propagate unimpeded. With 3D phonon scattering simulation over a 40 dB attenuation in transmitted power is found for the crystal, which is estimated to give a lifetime enhancement of…

research product