0000000001062178

AUTHOR

Aziza Hadj Ltaïef

Electrochemical treatment of aqueous solutions of catechol by various electrochemical advanced oxidation processes: Effect of the process and of operating parameters

Abstract Catechol, one of the most abundant compounds in olive mills wastewaters, which is generated in the Fenton degradation of various aromatic compounds, is a toxic, possible carcinogen, persistent pollutant and it is not readily biodegradable. Hence, its degradation requires the utilization of advanced oxidation processes (AOPs). Here, the electrochemical treatment of aqueous solutions of catechol was investigated. The utilization of various electrochemical processes, such as electro-Fenton (EF), direct anodic oxidation (AO), indirect oxidation by electro-generated active chlorine and coupled processes was investigated. Furthermore, the effect of various operating conditions (including…

research product

Electrochemical Abatement of Organic Pollutants in Water by Electro- Fenton with Natural Heterogeneous Catalysts Under Pressure

In recent decades, electrochemical advanced oxidation processes (EAOPs) have proved as alternative technologies to conventional processes. Indeed, EAOPs can often allow to treat wastewater containing toxic and POPs. Among them, electro-Fenton (EF) is considered particularly promising for the treatment of recalcitrant organics, since it presents various advantages, including high abatements for many organic pollutants, simplicity of equipment and operations, relatively low cost and low consumption of chemicals. Recently, the utilization of some natural heterogeneous catalysts was proposed in order to avoid some disadvantages of the conventional EF process. In this frame, in this work EF proc…

research product

Electrochemical treatment of aqueous solutions of organic pollutants by electro-Fenton with natural heterogeneous catalysts under pressure using Ti/IrO2-Ta2O5 or BDD anodes

The treatment of toxic organic pollutants by electro-Fenton (EF) presents some drawbacks such as the necessity to work at low pH and the low solubility of oxygen in water contacted with air or oxygen at room pressure that results often in slow and relatively low abatements. Here, the coupled adoption of natural heterogeneous catalysts and of relatively high pressure was proposed in order to improve the performances of EF for the treatment of organic pollutants. Caffeic acid (CA) and 3-chlorophenol were used as model resistant organic pollutants. EF process was performed using both conventional homogeneous FeSO4 and natural heterogeneous catalysts (pyrite, chalcopyrite, Fe2O3 and Fe3O4) as i…

research product