0000000001064398
AUTHOR
Ross Knapman
Nonlinear Dynamics of Topological Ferromagnetic Textures for Frequency Multiplication
We propose that the non-linear radio-frequency dynamics and nanoscale size of topological magnetic structures associated to their well-defined internal modes advocate for their use as in-materio scalable frequency multipliers for spintronic systems. Frequency multipliers allow for frequency conversion between input and output frequencies, and thereby significantly increase the range of controllably accessible frequencies. In particular, we explore the excitation of eigenmodes of topological magnetic textures by fractions of the corresponding eigenfrequencies. We show via micromagnetic simulations that low-frequency perturbations to the system can efficiently excite bounded modes with a high…
Current-induced H-shaped-skyrmion creation and their dynamics in the helical phase
Abstract Inevitable for the basic principles of skyrmion racetrack-like applications is not only their confined motion along one-dimensional channels but also their controlled creation and annihilation. Helical magnets have been suggested to naturally confine the motion of skyrmions along the tracks formed by the helices, which also allow for high-speed skyrmion motion. We propose a protocol to create topological magnetic structures in a helical background. We furthermore analyse the stability and current-driven motion of the skyrmions in a helical background with in-plane uniaxial anisotropy fixing the orientation of the helices.