0000000001069776

AUTHOR

Michel Lavoie

showing 1 related works from this author

Machine learning predictions of trophic status indicators and plankton dynamic in coastal lagoons

2018

Abstract Multivariate trophic indices provide an efficient way to assess and classify the eutrophication level and ecological status of a given water body, but their computation requires the availability of experimental information on many parameters, including biological data, that might not always be available. Here we show that machine learning techniques – once trained against a full data set – can be used to infer plankton biomass information from chemical and physical parameter only, so that trophic index can then be computed without using additional biological data. More specifically, we reconstruct plankton information from chemical and physical data, and this information together w…

0106 biological sciencesGeneral Decision Sciences010501 environmental sciencesMachine learningcomputer.software_genre01 natural sciencesZooplanktonPhytoplankton14. Life underwaterEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesTrophic levelBiological dataEcologybusiness.industry010604 marine biology & hydrobiologyPlanktonEcological indicator[SDE]Environmental SciencesEnvironmental scienceArtificial intelligenceTrixbusinessEutrophicationcomputer
researchProduct