A coupled discontinuous Galerkin-Finite Volume framework for solving gas dynamics over embedded geometries
Author(s): Gulizzi, Vincenzo; Almgren, Ann S; Bell, John B | Abstract: We present a computational framework for solving the equations of inviscid gas dynamics using structured grids with embedded geometries. The novelty of the proposed approach is the use of high-order discontinuous Galerkin (dG) schemes and a shock-capturing Finite Volume (FV) scheme coupled via an $hp$ adaptive mesh refinement ($hp$-AMR) strategy that offers high-order accurate resolution of the embedded geometries. The $hp$-AMR strategy is based on a multi-level block-structured domain partition in which each level is represented by block-structured Cartesian grids and the embedded geometry is represented implicitly by a…