0000000001079190
AUTHOR
Edgars Vasiljevs
Repeatability Study on a Classifier for Gastric Cancer Detection from Breath Sensor Data
The SNIFFPHONE device is a portable multichannel gas sensor, aiming to detect gastric cancer (GC) from breath samples. It employs gold nanoparticle (GNP) sensors reacting to volatile organic compounds (VOCs) in the exhaled breath, a non-invasive technique to support early diagnosis. This study evaluates the repeatability of the SNIFFPHONE classification result for measurements conducted on healthy subjects over a short period of time of less than 10 minutes. Due to the portable nature of the device, repeatability is studied with respect to varying measurement location. We find the classification results repeatable with a statistically significant 81 % Pearson correlation coefficient, even t…
Non-contact breath sampling for sensor-based breath analysis
Breath analysis holds great promise for real-time and non-invasive medical diagnosis. Thus, there is a considerable need for simple-in-use and portable analyzers for rapid detection of breath indicators for different diseases in their early stages. Sensor technology meets all of these demands. However, miniaturized breath analyzers require adequate breath sampling methods. In this context, we propose non-contact sampling; namely the collection of breath samples by exhalation from a distance into a miniaturized collector without bringing the mouth into direct contact with the analyzing device. To evaluate this approach different breathing maneuvers have been tested in a real-time regime on a…
Sensing gastric cancer via point‐of‐care sensor breath analyzer
Background Detection of disease by means of volatile organic compounds from breath samples using sensors is an attractive approach to fast, noninvasive and inexpensive diagnostics. However, these techniques are still limited to applications within the laboratory settings. Here, we report on the development and use of a fast, portable, and IoT-connected point-of-care device (so-called, SniffPhone) to detect and classify gastric cancer to potentially provide new qualitative solutions for cancer screening. Methods A validation study of patients with gastric cancer, patients with high-risk precancerous gastric lesions, and controls was conducted with 2 SniffPhone devices. Linear discriminant an…