Sharpness of Rickman’s Picard theorem in all dimensions
We show that given \({n \geqslant 3}\), \({q \geqslant 1}\), and a finite set \({\{y_1, \ldots, y_q \}}\) in \({\mathbb{R}^n}\) there exists a quasiregular mapping \({\mathbb{R}^n\to \mathbb{R}^n}\) omitting exactly points \({y_1, \ldots, y_q}\).