0000000001085323

AUTHOR

Alexander C. Cerny

showing 1 related works from this author

The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells

2015

Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1) and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequ…

RhodopsinCancer Researchlcsh:QH426-470LightGTP'BiologyEye03 medical and health sciencesTransient receptor potential channelTransient Receptor Potential Channels0302 clinical medicineGTP-binding protein regulatorsGTP-Binding ProteinsGeneticsAnimalsDrosophila ProteinsMolecular BiologyGenetics (clinical)Ecology Evolution Behavior and SystematicsIon channel030304 developmental biology0303 health sciencesCell MembraneMembrane ProteinsDarknessRhabdomereTransport proteinCell biologylcsh:GeneticsProtein TransportDrosophila melanogasterMembrane proteinRhodopsinMutationbiology.proteinPhotoreceptor Cells Invertebrate030217 neurology & neurosurgerySignal TransductionResearch ArticlePLOS Genetics
researchProduct