0000000001087185

AUTHOR

F. Torrent

showing 2 related works from this author

Wavelength influence on nitrogen insertion into titanium by nanosecond pulsed laser irradiation in air

2013

Abstract We studied in this work the influence of the wavelength (532 vs. 1064 nm) on the insertion of nitrogen in titanium targets by surface laser treatments in air. The laser pulses were of 5 ns and the irradiance was lower than 25 × 10 12  W/m 2 . Results obtained using a frequency-doubled Nd:YAG laser at 532 nm were compared with those previously reported for laser treatments at 1064 nm. Nuclear reaction analysis and micro-Raman spectroscopy were used for determining the composition and the structure of the surface layers, respectively. Results showed the lower efficiency of irradiation at 532 nm for nitrogen insertion, which is possible only above threshold conditions depending on bot…

Materials scienceAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsLaserNitrogenSurfaces Coatings and Filmslaw.inventionSurface coatingsymbols.namesakechemistrylawNuclear reaction analysissymbolsIrradiationSpectroscopyRaman spectroscopyTitaniumApplied Surface Science
researchProduct

Influence of the composition of titanium oxynitride layers on the fretting behavior of functionalized titanium substrates: PVD films versus surface l…

2014

International audience; Abstract In this work we compared the fretting behavior of pure titanium plates functionalized with titanium oxynitride surface layers, obtained by two methods: a Physical Vapor Deposition (PVD) method, reactive magnetron sputtering, and Surface Laser Treatments (SLT), under different mixtures of oxygen and nitrogen. The composition of the layers was determined by nuclear reaction analysis (NRA) and their structure was analyzed by Raman spectroscopy. PVD layers were TiN-like fcc layers, with an oxygen concentration going from 36 to 50 at.%. Three SLT layers were studied. The first one was a TiN-like layer containing ~28 at.% of oxygen. The second one was formed of di…

Materials sciencechemistry.chemical_elementFretting02 engineering and technologyengineering.material01 natural sciencesLaser nitriding PVD Titanium Tribology NRA Raman spectroscopysymbols.namesakeCoatingSputtering0103 physical sciencesMaterials ChemistryComposite material010302 applied physicsMetallurgy[CHIM.MATE]Chemical Sciences/Material chemistrySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsSurfaces Coatings and FilmsTitanium oxidechemistry[ CHIM.MATE ] Chemical Sciences/Material chemistryPhysical vapor depositionengineeringsymbols0210 nano-technologyRaman spectroscopyLayer (electronics)TitaniumSurface and Coatings Technology
researchProduct