0000000001088757

AUTHOR

Sabine Ott

showing 2 related works from this author

Tyrosine-phosphorylation-dependent and Rho-protein-mediated control of cellular phosphatidylinositol 4,5-bisphosphate levels

1998

The polyphosphoinositide PtdIns(4,5)P2, best known as a substrate for phospholipase C isozymes, has recently been recognized to be involved in a variety of other cellular processes. The aim of this study was to examine whether the cellular levels of this versatile phospholipid are controlled by tyrosine phosphorylation. The studies were performed in human embryonic kidney (HEK)-293 cells stably expressing the M3 muscarinic acetylcholine receptor. Inhibition of tyrosine phosphatases by pervanadate induced an up-to-approx.-2.5-fold increase in the total cellular level of PtdIns(4,5)P2, which was both time- and concentration-dependent. In contrast, the tyrosine kinase inhibitors, genistein and…

Phosphatidylinositol 45-DiphosphateBacterial ToxinsBiologyBiochemistryCell LineGTP Phosphohydrolaseschemistry.chemical_compoundEnzyme activatorBacterial ProteinsGTP-Binding ProteinsPhospholipase DHumansPhosphorylationTyrosinerhoB GTP-Binding ProteinMolecular BiologyPhospholipase CADP-Ribosylation FactorsClostridioides difficilePhospholipase DMembrane ProteinsTyrosine phosphorylationCell BiologyTyrphostinsGenisteinCell biologyEnzyme ActivationBiochemistryPhosphatidylinositol 45-bisphosphatechemistryTyrosinePhosphorylationVanadatesTyrosine kinaseResearch ArticleBiochemical Journal
researchProduct

Restoration of Clostridium difficile toxin-B-inhibited phospholipase D by phosphatidylinositol 4,5-bisphosphate.

1996

Receptor signalling to phospholipase D (PLD) in human embryonic kidney (HEK) cells stably expressing the m3 muscarinic acetylcholine receptor apparently involves Rho proteins. Since phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] has been recognized as an essential cofactor for PLD activity and since activated Rho proteins have been reported to stimulate the synthesis of PtdIns(4,5)P2, we studied whether in HEK cells PLD activity is regulated by PtdIns(4,5)P2 and, in particular, whether PtdIns(4,5)P2 can restore PLD activity inhibited by Clostridium difficile toxin B, which inactivates Rho proteins. Addition of MgATP to permeabilized HEK cells increased basal PLD activity and potentia…

Phosphatidylinositol 45-DiphosphateGTP'Bacterial ToxinsClostridium difficile toxin BBiologyBiochemistryCell Linechemistry.chemical_compoundBacterial ProteinsGTP-Binding ProteinsPhosphatidylcholineRhoB GTP-Binding ProteinPhospholipase DHumansPhosphatidylinositolEnzyme InhibitorsrhoB GTP-Binding ProteinPhospholipase DClostridioides difficileHEK 293 cellsCell MembraneMembrane ProteinsReceptors MuscarinicCell biologyEnzyme Activationenzymes and coenzymes (carbohydrates)chemistryPhosphatidylinositol 45-bisphosphateGuanosine 5'-O-(3-Thiotriphosphate)lipids (amino acids peptides and proteins)European journal of biochemistry
researchProduct