0000000001097936

AUTHOR

Giovanni Vincenzi

0000-0002-3869-885x

showing 2 related works from this author

Some characterisations of groups in which normality is a transitive relation by means of subgroup embedding properties

2018

[EN] In this survey we highlight the relations between some subgroup embedding properties that characterise groups in which normality is a transitive relation in certain universes of groups with some finiteness properties.

‎group without infinite‎ ‎simple sectionsSubgroup&#8206FC&#8727lcsh:Mathematics-Group&#8206‎T-group‎Group Without Infinite&#8206Grups Teoria desubgroup embedding propertieslcsh:QA1-939t-property&#8206‎subgroup‎ ‎embedding property‎‎FC$^*$-group‎Group&#8206Simple Sectionst-property subgroup embedding properties‎group‎Embedding Property&#8206MATEMATICA APLICADAT-Group&#8206
researchProduct

On generalised FC-groups in which normality is a transitive relation

2016

We extend to soluble FC∗ -groups, the class of generalised FC-groups introduced in [F. de Giovanni, A. Russo, G. Vincenzi, Groups with restricted conjugacy classes , Serdica Math. J. 28(3) (2002), 241 254], the characterisation of finite soluble T-groups obtained recently in [G. Kaplan, On T-groups, supersolvable groups and maximal subgroups , Arch. Math. 96 (2011), 19 25].

General Mathematicsmedia_common.quotation_subject0102 computer and information sciencesFC-group01 natural sciencesCombinatoricsT-groupT-groupFC-groupmedia_common.cataloged_instance0101 mathematicsAlgebra over a fieldEuropean unionNormalityMathematicsmedia_commonTransitive relationPronormal subgroup010102 general mathematicsGrups Teoria dePronormal subgroup010201 computation theory & mathematicsT-group FC-group pronormal subgroupÀlgebraMATEMATICA APLICADA
researchProduct