0000000001099323

AUTHOR

Víctor M. Eguíluz

0000-0003-1133-1289

showing 1 related works from this author

From Continuous to Discontinuous Transitions in Social Diffusion

2018

Models of social diffusion reflect processes of how new products, ideas or behaviors are adopted in a population. These models typically lead to a continuous or a discontinuous phase transition of the number of adopters as a function of a control parameter. We explore a simple model of social adoption where the agents can be in two states, either adopters or non-adopters, and can switch between these two states interacting with other agents through a network. The probability of an agent to switch from non-adopter to adopter depends on the number of adopters in her network neighborhood, the adoption threshold $T$ and the adoption coefficient $a$, two parameters defining a Hill function. In c…

Physics - Physics and SocietyPhase transitionMaterials Science (miscellaneous)PopulationBiophysicsFOS: Physical sciencesGeneral Physics and AstronomyPhysics and Society (physics.soc-ph)Parameter space01 natural sciences010305 fluids & plasmasTranscritical bifurcation0103 physical sciencesStatistical physicsPhysical and Theoretical Chemistry010306 general physicseducationadoptionMathematical PhysicsMathematicseducation.field_of_studymean-fieldFunction (mathematics)Empirical measurelcsh:QC1-999Pitchfork bifurcationphase transitionOrdinary differential equationsocial contagionspreadinglcsh:PhysicsFrontiers in Physics
researchProduct