0000000001105571

AUTHOR

M. Siebold

showing 2 related works from this author

Laser cooling of stored relativistic ion beams with large momentum spreads using a laser system with a wide scanning range

2014

New results on laser cooling of stored, bunched, relativistic ion beams are presented. For the first time it has been possible to cool an ion beam with large momentum spread without initial electron cooling or scanning of the bunching frequency by using a single cw laser system.

PhysicsHistoryRange (particle radiation)Ion beamResolved sideband coolingbusiness.industryLaserComputer Science ApplicationsEducationIonlaw.inventionMomentumOpticslawLaser coolingPhysics::Accelerator PhysicsPhysics::Atomic PhysicsAtomic physicsbusinessElectron coolingJournal of Physics: Conference Series
researchProduct

Laser cooling of relativistic heavy-ion beams for FAIR

2015

Laser cooling is a powerful technique to reduce the longitudinal momentum spread of stored relativistic ion beams. Based on successful experiments at the experimental storage ring at GSI in Darmstadt, of which we show some important results in this paper, we present our plans for laser cooling of relativistic ion beams in the future heavy-ion synchrotron SIS100 at the Facility for Antiproton and Ion Research in Darmstadt.

PhysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsSynchrotronCharged particlelaw.inventionIonNuclear physicsPhysics::Plasma PhysicslawAntiprotonLaser coolingAntimatterPhysics::Accelerator PhysicsFacility for Antiproton and Ion ResearchPhysics::Atomic PhysicsNuclear ExperimentMathematical PhysicsStorage ringPhysica Scripta
researchProduct