0000000001106938

AUTHOR

Oliver Lantwin

showing 2 related works from this author

The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

2019

The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

TechnologyPhysics - Instrumentation and Detectorswigglers and undulators)magnet: designPermanent magnet devicesPhysics::Instrumentation and Detectorsengineering01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingradiation hardened magnetsSubatomär fysik0302 clinical medicineDipole magnetSubatomic PhysicsNeutrino detectorsDetectors and Experimental TechniquesInstruments & InstrumentationInstrumentationphysics.ins-detAcceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)Mathematical PhysicsPhysics02 Physical SciencesLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)magnet: technologyNuclear & Particles Physicsbending magnetneutrino: detectorNeutrino detectornormal-conductingAcceleration cavities and magnets superconducting (high-temperature superconductorproposed experimentCERN LabRadiation hardened magnetsFOS: Physical sciencesNormal-conductingAccelerator Physics and InstrumentationNuclear physics03 medical and health sciences0103 physical sciencespermanent magnet devices[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Wigglers and undulators)normal-conducting magnetsScience & Technology010308 nuclear & particles physicsScatteringLarge detector systems for particle and astroparticle physicsAcceleratorfysik och instrumenteringLarge detector systems for particle physicsHigh temperature superconductors Neutrons Permanent magnets Ships Superconducting magnets Wigglers Astroparticle physics Comprehensive designs Massive structures Neutrino detectors Normal-conducting Radiation-hardened Ship experiments Technical challenges Particle detectorsVolume (thermodynamics)MagnetAcceleration cavities and magnets superconducting (high-temperature superconductor; Large detector systems for particle and astroparticle physics; Neutrino detectors; Normal-conducting; Permanent magnet devices; Radiation hardened magnets; Wigglers and undulators)High Energy Physics::Experimentneutrino detectors
researchProduct

Measurement of the W boson mass

1996

The W boson mass is measured using proton-proton collision data at root s = 13 TeV corresponding to an integrated luminosity of 1.7fb(-1) recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon q/p(T) distribution of a sample of W ->mu y decays and the phi* distribution of a sample of Z -> mu mu decays the W boson mass is determined to be

13000 GeV-cmsTevatronparton: distribution functionQC770-798W: leptonic decay7. Clean energy01 natural sciencesLuminosityPhysics Particles & FieldsSubatomär fysikHadron-Hadron scattering (experiments)scattering [p p]Electroweak interactionNuclear Experimentparticle identification [muon]Settore FIS/01PhilosophyPhysicsCoupling (probability)CERN LHC CollHadron colliderPhysical SciencesTransverse masscolliding beams [p p]distribution function [parton]Collider Detector at FermilabParticles and fieldCOLLISIONSp p: scatteringCERN PBARP COLLIDERAstrophysics::High Energy Astrophysical PhenomenaW: mass: measuredStandard ModelNuclear physicsddc:530010306 general physics0206 Quantum PhysicsMuonScience & Technology010308 nuclear & particles physicsWeinberg angleHEPFERMILAB TEVATRONElectroweak interaction Hadron-Hadron scattering (experiments) QCD For- ward physicsCDFp p: colliding beamsPhysics::Instrumentation and DetectorsElectron–positron annihilation= 1.8 TEVGeneral Physics and Astronomy= 1.8 TEV; PBARP COLLISIONS; DECAYVector bosonHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Computer Science::Systems and ControlSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]PhysicFermilabBosonPhysics0105 Mathematical PhysicsStatistics::ApplicationsSettore FIS/01 - Fisica Sperimentalestatistical [error]Nuclear & Particles PhysicsCENTRAL TRACKING CHAMBERerror: statisticalCENTRAL ELECTROMAGNETIC CALORIMETERTransverse momentum0202 Atomic Molecular Nuclear Particle and Plasma PhysicsLHCmass: measured [W]Particle Physics - ExperimentStatistics::TheoryParticle physicsNuclear and High Energy Physicselectroweak interaction: precision measurementRegular Article - Experimental PhysicsTRANSVERSE ENERGYFOS: Physical sciencesmuon: particle identification530Particle decayPBARP COLLISIONSNuclear and particle physics. Atomic energy. Radioactivityprecision measurement [electroweak interaction]0103 physical sciencesForward physicVECTOR BOSONElectroweak interaction Hadron-Hadron scattering (experiments) QCD Forward physicsCERN PBARP COLLIDER; CENTRAL ELECTROMAGNETIC CALORIMETER; CENTRAL TRACKING CHAMBER; = 1.8 TEV; PARTON DISTRIBUTIONS; FERMILAB TEVATRON; VECTOR BOSON; TRANSVERSE ENERGY; CDF; COLLISIONShep-exHigh Energy Physics::PhenomenologyLHC-BQCDleptonic decay [W]LHCbPARTON DISTRIBUTIONSMass spectrumForward physicsPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentDECAYHumanitiesexperimental results
researchProduct