0000000001107785

AUTHOR

Jean-marc Lebel

The shell matrix of the pulmonate land snail Helix aspersa maxima.

12 pages; International audience; In mollusks, the shell mineralization process is controlled by an array of proteins, glycoproteins and polysaccharides that collectively constitute the shell matrix. In spite of numerous researches, the shell protein content of a limited number of model species has been investigated. This paper presents biochemical data on the common edible land snail Helix aspersa maxima, a model organism for ecotoxicological purposes, which has however been poorly investigated from a biomineralization viewpoint. The shell matrix of this species was extracted and analyzed biochemically for functional in vitro inhibition assay, for amino acid and monosaccharides composition…

research product

Shell repair process in the green ormer Haliotis tuberculata: a histological and microstructural study.

In the present paper, juvenile and adult shells of the green ormer Haliotis tuberculata ('Oreille de Saint-Pierre') were perforated in a zone close to the shell edge and the shell repair process was followed at two levels: (1) by observing the histology of the calcifying mantle in the repair zone and (2) by analyzing with SEM the microstructure of the shell repair zone. Histological data clearly show the presence of calcium carbonate granules into the connective tissues, but not in the epithelial cells. This suggests that calcium carbonate granules are synthesized by sub-epithelial cells and actively transported through the epithelium to the repair zone, via a process which may be similar t…

research product

Shell Extracts from the Marine Bivalve Pecten maximus Regulate the Synthesis of Extracellular Matrix in Primary Cultured Human Skin Fibroblasts

International audience; Mollusc shells are composed of more than 95% calcium carbonate and less than 5% of an organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. Previous studies have elucidated the biological activities of the shell matrices from bivalve molluscs on skin, especially on the expression of the extracellular matrix components of fibroblasts. In this work, we have investigated the potential biological activities of shell matrix components extracted from the shell of the scallop Pecten maximus on human fibroblasts in primary culture. Firstly, we demonstrated that shell matrix components had different effects on general cellular activities. Secondly, …

research product