0000000001107861

AUTHOR

María M. Lorenzo

0000-0003-1972-014x

Analysis of the presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E Spain). Sources, partitioning and relationships with water physical characteristics.

The presence, sources and partitioning of 21 perfluoroalkyl substances (PFASs: C4–C14, C16, C18 carboxylate, C4, C6–C10 sulfonates and C8 sulfonamide) were assessed in water, sediment, and biota of the Jucar River basin (E Spain). Considering the three matrices, perfluoropentanoate (PFPeA) and perfluorooctane sulfonate (PFOS) were the most frequent compounds, being remarkable the high occurrence of short-chain PFASs (C≤8), which are intended to replace the long-chain ones in several industrial and commercial applications. In general, all samples were contaminated with at least one PFAS, with the exception of three fish samples. Mean concentrations detected in sediments (0.22–11.5 ng g−1) an…

research product

Ultra-high-pressure liquid chromatography tandem mass spectrometry method for the determination of 9 organophosphate flame retardants in water samples

Few methods are available for comprehensive organophosphate flame retardants (PFRs) detection in water and wastewater. Gas chromatography has been employed previously, but this approach is less selective, not amenable for use with deuterated standards and can suffer unfavorable fragmentation. Ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-QqQ-MS/MS) has become the most promising platform, already applied successfully for analysis of selected PFRs in some environmental matrices like water and wastewater. However, the presence of some interferences from the dissolvent, the equipment and the used materials should be taken into account. The procedure involves: The fir…

research product

Determination of organophosphate flame retardants in soil and fish using ultrasound-assisted extraction, solid-phase clean-up, and liquid chromatography with tandem mass spectrometry

A solid–liquid extraction method in combination with high‐performance liquid chromatography and tandem mass spectrometry was developed and optimized for extraction and analysis of organophosphorus flame retardants in soil and fish. Methanol was chosen as the optimum extraction solvent, not only in terms of extraction efficiency, but also for its broader analyte coverage. The subsequent clean‐up by solid‐phase extraction is required to eliminate matrix coextractives and reduce matrix effects. Recoveries of the optimized method were 50–121% for soil and 47–123% for biota, both with high precision (RSDs <12% in soil and <23% in biota). The method limits of detection ranged from 0.06 to 0.20 ng…

research product