Interactive data-driven multiobjective optimization of metallurgical properties of microalloyed steels using the DESDEO framework
Solving real-life data-driven multiobjective optimization problems involves many complicated challenges. These challenges include preprocessing the data, modelling the objective functions, getting a meaningful formulation of the problem, and supporting decision makers to find preferred solutions in the existence of conflicting objective functions. In this paper, we tackle the problem of optimizing the composition of microalloyed steels to get good mechanical properties such as yield strength, percentage elongation, and Charpy energy. We formulate a problem with six objective functions based on data available and support two decision makers in finding a solution that satisfies them both. To …