0000000001118012

AUTHOR

Julian Gröbner

showing 2 related works from this author

Influence of clouds on the spectral actinic flux density in the lower troposphere (INSPECTRO): overview of the field campaigns

2008

Ultraviolet radiation is the key factor driving tropospheric photochemistry. It is strongly modulated by clouds and aerosols. A quantitative understanding of the radiation field and its effect on photochemistry is thus only possible with a detailed knowledge of the interaction between clouds and radiation. The overall objective of the project INSPECTRO was the characterization of the three-dimensional actinic radiation field under cloudy conditions. This was achieved during two measurement campaigns in Norfolk (East Anglia, UK) and Lower Bavaria (Germany) combining space-based, aircraft and ground-based measurements as well as simulations with the one-dimensional radiation transfer model UV…

Atmospheric ScienceAIRBORNEMODEL INTERCOMPARISON IPMMI010504 meteorology & atmospheric sciencesPHOTOCHEMICAL ACTIVITYmedia_common.quotation_subjectFluxPHOTOLYSIS FREQUENCY-MEASUREMENTRadiationAtmospheric sciences01 natural sciencesBROKEN CLOUDlaw.inventionTroposphere010309 opticslcsh:Chemistrylaw0103 physical sciencesddc:550MEASUREMENTSZenithABSORPTION CROSS-SECTIONSmedia_commonRemote sensingMonochromator0105 earth and related environmental sciences[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereVERTICAL-DISTRIBUTIONStray lightlcsh:QC1-999UVJSpectroradiometerlcsh:QD1-999Sky13. Climate actionQUANTUM YIELDSEnvironmental science/dk/atira/pure/subjectarea/asjc/1900/1902lcsh:PhysicsAEROSOL EXTINCTION
researchProduct

Results from the Fourth WMO Filter Radiometer Comparison for aerosol optical depth measurements

2018

Abstract. This study presents the results of the Fourth Filter Radiometer Comparison that was held in Davos, Switzerland, between 28 September and 16 October 2015. Thirty filter radiometers and spectroradiometers from 12 countries participated including reference instruments from global aerosol networks. The absolute differences of all instruments compared to the reference have been based on the World Meteorological Organization (WMO) criterion defined as follows: 95% of the measured data has to be within 0.005 ± 0.001∕m (where m is the air mass). At least 24 out of 29 instruments achieved this goal at both 500 and 865 nm, while 12 out of 17 and 13 out of 21 achieved this at 368 and 412 nm,…

Earth's energy budgetTermodinàmica atmosfèricaAtmospheric ScienceAngstrom exponent010504 meteorology & atmospheric sciencesMeteorologi och atmosfärforskning01 natural sciencesAerosol optical depthlcsh:Chemistry010309 opticssymbols.namesakeAerosol networks0103 physical sciencesRayleigh scatteringradiometry field campaignRadiation balance0105 earth and related environmental sciencesRemote sensingAerosolsRadiometerlcsh:QC1-999AerosolSpectroradiometerlcsh:QD1-99913. Climate action[SDU]Sciences of the Universe [physics]Meteorology and Atmospheric SciencessymbolsEnvironmental scienceRadiometerSun photometerslcsh:PhysicsWater vapor
researchProduct