0000000001120276

AUTHOR

Anja Uhmann

Antitumor Effects of a Combined 5-Aza-2′Deoxycytidine and Valproic Acid Treatment on Rhabdomyosarcoma and Medulloblastoma in Ptch Mutant Mice

Abstract Patched (Ptch) heterozygous mice develop medulloblastoma (MB) and rhabdomyosarcoma (RMS) resembling the corresponding human tumors. We have previously shown that epigenetic silencing of the intact Ptch allele contributes to tumor formation in this model. Here, we investigated whether targeting of epigenetic silencing mechanisms could be useful in the treatment of Ptch-associated cancers. A reduction of endogenous DNA methyltransferase1 (Dnmt1) activity significantly reduced tumor incidence in heterozygous Ptch knockout mice. A combined treatment with the Dnmt inhibitor 5-aza-2′deoxycytidine (5-aza-dC) and the histone deacetlyase (HDAC) inhibitor valproic acid (VPA) efficiently prev…

research product

Time-point and dosage of gene inactivation determine the tumor spectrum in conditional Ptch knockouts

Mutations in Patched (PTCH) have been associated with tumors characteristic both for children [medulloblastoma (MB) and rhabdomyosarcoma (RMS)] and for elderly [basal cell carcinoma (BCC)]. The determinants of the variability in tumor onset and histology are unknown. We investigated the effects of the time-point and dosage of Ptch inactivation on tumor spectrum using conditional Ptch-knockout mice. Ptch heterozygosity induced prenatally resulted in the formation of RMS, which was accompanied by the silencing of the remaining wild-type Ptch allele. In contrast, RMS was observed neither after mono- nor biallelic postnatal deletion of Ptch. Postnatal biallelic deletion of Ptch led to BCC preca…

research product