0000000001120328

AUTHOR

Tohru Sekino

0000-0002-6605-9166

showing 2 related works from this author

Fe and Zn co-substituted beta-tricalcium phosphate (β-TCP): Synthesis, structural, magnetic, mechanical and biological properties

2020

This work was supported by the European Social Fund under the No. 09.3.3- LMT-K-712 “Development of Competences of Scientists, other Researchers and Students through Practical Research Activities” measure. AK would like to express sincere gratitude for Fellowship administrated by The Japan Society for the Promotion of Science (JSPS). Fellow’s ID No.: L12546. Authors are grateful to R. Vargalis (Vilnius University) for taking SEM images. © 2020. This work is licensed under a CC BY-NC-ND license.

inorganic chemicalsCalcium PhosphatesMaterials scienceEmbryo NonmammalianCytotoxicityIronStructural analysisBioengineering02 engineering and technology010402 general chemistrySpectrum Analysis Raman01 natural scienceslaw.inventionIonBiomaterialsParamagnetismMagnetizationsymbols.namesakeMagneticsSpectroscopy MossbauerlawHardnessBeta-tricalcium phosphateMagnetic properties:NATURAL SCIENCES:Physics [Research Subject Categories]AnimalsElectron paramagnetic resonanceZebrafishFe3+ and Zn2+ co-substitutionRietveld refinementThermal decompositionTemperature021001 nanoscience & nanotechnology0104 chemical sciencesCrystallographyZincMechanics of MaterialsVickers hardness testsymbolsPowders0210 nano-technologyRaman spectroscopyMaterials Science and Engineering: C
researchProduct

The influence of Fe3+ doping on thermally induced crystallization and phase evolution of amorphous calcium phosphate

2021

The present study investigates thermally induced crystallization and phase evolution of amorphous calcium phosphate (ACP) partially substituted with Fe3+ ions (M/P = 1.5 : 1). It was demonstrated that the presence of Fe3+ ions radically changes the crystallization behavior of ACP and completely prevents the formation of α-tricalcium phosphate (α-TCP, Ca3(PO4)2), which is the first crystalline phase obtained from non-substituted ACP upon thermal treatment. Surprisingly, calcium deficient hydroxyapatite (CDHA) was obtained instead of α-TCP. Such unusual crystallization behavior was observed with a doping level as low as 0.1 mol% with respect to Ca ions. Moreover, it was shown that the presenc…

chemistry.chemical_element02 engineering and technologyGeneral ChemistryThermal treatmentCalcium010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsPhosphate01 natural sciences0104 chemical scienceslaw.inventionCrystallographychemistry.chemical_compoundchemistrylawPhase (matter)General Materials ScienceAmorphous calcium phosphateCrystallization0210 nano-technologyThermal analysisElectron paramagnetic resonanceCrystEngComm
researchProduct