0000000001123660

AUTHOR

C. F. Perdrisat

showing 8 related works from this author

Search for Effects Beyond the Born Approximation in Polarization Transfer Observables ine→pElastic Scattering

2011

Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, $$G_{E}/G_{M}$$, obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic $$H(\vec{e},e'\vec{p})$$ reaction for three different beam energies at a fixed squared momentum transfer $Q^2 = 2.5$ GeV$^2$, spanning a wide range of the virtual photon p…

Elastic scatteringPhysicsParticle physics010308 nuclear & particles physicsHadronMomentum transferGeneral Physics and AstronomyElementary particle01 natural sciencesBaryon0103 physical sciencesMagnetic form factorHigh Energy Physics::ExperimentBorn approximation010306 general physicsNucleonPhysical Review Letters
researchProduct

Polarization observables in deuteron photodisintegration below 360 MeV

2010

High precision measurements of induced and transferred recoil proton polarization in d(polarized gamma, polarized p})n have been performed for photon energies of 277--357 MeV and theta_cm = 20 degrees -- 120 degrees. The measurements were motivated by a longstanding discrepancy between meson-baryon model calculations and data at higher energies. At the low energies of this experiment, theory continues to fail to reproduce the data, indicating that either something is missing in the calculations and/or there is a problem with the accuracy of the nucleon-nucleon potential being used.

PhysicsNuclear and High Energy PhysicsPhotonMeson010308 nuclear & particles physicsNuclear TheoryPolarization observablesFOS: Physical sciencesPolarization (waves)01 natural sciencesRecoil protonNuclear physicsBaryonDeuteriumPhotodisintegration0103 physical sciencesNuclear Experiment (nucl-ex)Atomic physicsNuclear Experiment010306 general physicsNuclear ExperimentPhysics Letters B
researchProduct

High Resolution Spectroscopy ofBΛ12by Electroproduction

2007

An experiment measuring electroproduction of hypernuclei has been performed in Hall A at Jefferson Lab on a $^{12}$C target. In order to increase counting rates and provide unambiguous kaon identification two superconducting septum magnets and a Ring Imaging CHerenkov detector (RICH) were added to the Hall A standard equipment. An unprecedented energy resolution of less than 700 keV FWHM has been achieved. Thus, the observed \lam{12}{B} spectrum shows for the first time identifiable strength in the core-excited region between the ground-state {\it s}-wave $\Lambda$ peak and the 11 MeV {\it p}-wave $\Lambda$ peak.

PhysicsSuperconductivity010308 nuclear & particles physicsResolution (electron density)General Physics and AstronomyOrder (ring theory)Lambda01 natural sciencesRing-imaging Cherenkov detectorNuclear physicsFull width at half maximum0103 physical sciencesNuclear Experiment010306 general physicsSpectroscopyEnergy (signal processing)Physical Review Letters
researchProduct

Virtual Compton scattering and the generalized polarizabilities of the proton atQ2=0.92and 1.76 GeV2

2012

Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P{sub LL}-P{sub TT}/epsilon and P{sub LT}, and the electric and magnetic generalized polarizabilities (GPs) alpha{sub E}(Q{sup 2}) and beta{sub M}(Q{sup 2}) at values of the four-momentum transfer squared Q{sup 2} = 0.92 and 1.76 GeV{sup 2}. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q{sup 2}-…

PhysicsNuclear and High Energy PhysicsParticle physicsPhotonChiral perturbation theoryProton010308 nuclear & particles physicsStructure functionCompton scattering01 natural sciencesNuclear physicsAmplitudeDispersion relation0103 physical sciencesBeta (velocity)010306 general physicsPhysical Review C
researchProduct

Backward electroproduction ofπ0mesons on protons in the region of nucleon resonances at four momentum transfer squaredQ2=1.0GeV2

2004

Exclusive electroproduction of pi{sup 0} mesons on protons in the backward hemisphere has been studied at Q2 = 1.0 GeV2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma*p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma{sub T} + epsilon sigma{sub L}, sigma{sub TL}, and sigma{sub TT} were separated from the azimuthal distribution and are presented together with the MAID and SAID parameterizations.

PhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsNuclear TheoryHadronMomentum transferSigma01 natural sciencesNuclear physicsBaryonPion0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonLeptonPhysical Review C
researchProduct

Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

2009

We have made the first measurements of the virtual Compton scattering (VCS) process via the H$(e,e'p)\gamma$ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the $W$-dependence at fixed $Q^2=1$ GeV$^2$, and for the $Q^2$-dependence at fixed $W$ near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed $Q^2$-dependence is smooth. The measured ratio of H$(e,e'p)\gamma$ to H$(e,e'p)\pi^0$ cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data…

Elastic scatteringPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsScatteringCompton scatteringResonanceFOS: Physical sciencesInelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Deep inelastic scattering01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear Experiment
researchProduct

Spectroscopy ofLiΛ9by electroproduction

2015

Background: In the absence of accurate data on the free two-body hyperon-nucleon interaction, the spectra of hypernuclei provides information on the details of the effective hyperon-nucleon interaction.Purpose: To obtain a high-resolution binding-energy spectrum for the ${}^{9}\mathrm{Be}(e,{e}^{\ensuremath{'}}{K}^{+})_{\ensuremath{\Lambda}}^{9}\mathrm{Li}$ reaction.Method: Electroproduction of the hypernucleus $_{\ensuremath{\Lambda}}^{9}\mathrm{Li}$ has been studied for the first time with sub-MeV energy resolution in Hall A at Jefferson Lab on a $^{9}\mathrm{Be}$ target. In order to increase the counting rate and to provide unambiguous kaon identification, two superconducting septum magn…

SuperconductivityPhysicsNuclear and High Energy PhysicsNuclear TheoryOrder (ring theory)Atomic physicsNuclear ExperimentGround stateHypernucleusSpectroscopyLambdaEnergy (signal processing)Spectral linePhysical Review C
researchProduct

The quasielastic 2H(e,e'p)n reaction at high recoil momenta

2001

The 2H(e,e'p)n cross section was measured in Hall A of the Thomas Jefferson National Accelerator Facility (JLab) in quasielastic kinematics (x=0.96) at a four-momentum transfer squared, Q^2=0.67 (GeV/c)^2. The experiment was performed in fixed electron kinematics for recoil momenta from zero to 550 MeV/c. Though the measured cross section deviates by 1-2 sigma from a state-of-the-art calculation at low recoil momenta, it agrees at high recoil momenta where final state interactions (FSI) are predicted to be large.

Nuclear TheoryPhysics::Accelerator PhysicsFOS: Physical sciencesNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experiment
researchProduct