Handling Underdispersion in Calibrating Safety Performance Function at Urban, Four-Leg, Signalized Intersections
Poisson basic assumption of equidispersion is often too much restrictive for crash count data; in fact this type of data has been found to often exhibit overdispersion. Underdispersion has been less commonly observed, and this is the reason why it has been less convenient to model directly than overdispersion. Overdispersion and underdispersion are not the only issues that can be a potential source of error in specifying statistical models and that can lead to biased crash-frequency predictions; these issues can derive from data properties (temporal and spatial correlation, time-varying explanatory variables, etc.) or from methodological approach (omitted variables, functional form selectio…