0000000001129382

AUTHOR

Tetsu Sonoda

showing 9 related works from this author

The laser and optical system for the RIBF-PALIS experiment

2017

Abstract This paper describes the laser and optical system for the Parasitic radioactive isotope (RI) beam production by Laser Ion-Source (PALIS) in the RIKEN fragment separator facility. This system requires an optical path length of 70 m for transporting the laser beam from the laser light source to the place for resonance ionization. To accomplish this, we designed and implemented a simple optical system consisting of several mirrors equipped with compact stepping motor actuators, lenses, beam spot screens and network cameras. The system enables multi-step laser resonance ionization in the gas cell and gas jet via overlap with a diameter of a few millimeters, between the laser photons an…

Nuclear and High Energy PhysicsspektroskopiaPhysics::Optics01 natural sciencesBeam parameter productlaw.inventionVertical-cavity surface-emitting laserLaser linewidthOpticslaw0103 physical sciencesPhysics::Atomic PhysicsLaser power scaling010306 general physicsInstrumentationPhysicsDistributed feedback laserta114010308 nuclear & particles physicsbusiness.industryFar-infrared lasergas cellLaserlasertekniikkaLaser Ion Sourcegas jetlaser spectroscopyPhysics::Accelerator PhysicsLaser beam qualitylaser resonance ionizationbusinessydinfysiikkaNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Development of resonance ionization in a supersonic gas-jet for studies of short-lived and long-lived radioactive nuclei

2013

High-resolution resonance ionization spectroscopy (RIS) is required for laser spectroscopy and trace analysis of short-lived and long-lived radioactive nuclei. We have proposed high-resolution resonance ionization spectroscopy in a gas jet combined with a narrow band-width injection-locked Ti:Sapphire laser. Resonance ionization of stable 93Nb in a gas jet was demonstrated using a broad bandwidth Ti:Sapphire laser. In addition, a setup for high-resolution RIS in a gas-jet was designed using numerical simulations of the gas-jet conditions based on computational fluid dynamics.

Nuclear and High Energy PhysicsJet (fluid)ta114ChemistryThermal ionizationInstrumental chemistryIon sourceAtmospheric-pressure laser ionizationPhysics::Atomic PhysicsAtomic physicsSpectroscopyInstrumentationElectron ionizationAmbient ionizationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Mass Measurements and Implications for the Energy of the High-Spin Isomer inAg94

2008

Nuclides in the vicinity of {sup 94}Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Isotope Separator On-Line. The masses of the two-proton-decay daughter {sup 92}Rh and the beta-decay daughter {sup 94}Pd of the high-spin isomer in {sup 94}Ag have been measured, and the masses of {sup 93}Pd and {sup 94}Ag have been deduced. When combined with the data from the one-proton- or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in {sup 94}Ag, -46 370(170) or -44 970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.

PhysicsNuclear physicsMass excessIsotopeAnalytical chemistryGeneral Physics and AstronomyNuclideSpin (physics)Penning trapMass spectrometryBeta decayExcitationPhysical Review Letters
researchProduct

Excited states inPd115populated in theβ−decay ofRh115

2010

Excited states in $^{115}\mathrm{Pd}$, populated following the ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of $^{115}\mathrm{Rh}$ have been studied by means of $\ensuremath{\gamma}$ spectroscopy after the Penning-trap station at the IGISOL facility, University of Jyv\"askyl\"a. The $1$$/$$2$${}^{+}$ spin and parity assignment of the ground state of $^{115}\mathrm{Pd}$, confirmed in this work, may indicate a transition to an oblate shape in Pd isotopes at high neutron number.

PhysicsBaryonNuclear and High Energy PhysicsIsotopes of palladiumDouble beta decayExcited stateHadronAtomic physicsNuclear ExperimentNucleonGround stateRadioactive decayPhysical Review C
researchProduct

Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source @ LISOL

2012

The Leuven Isotope Separator On-Line (LISOL) facility at the Cyclotron Research Center (CRC) Louvain-la-Neuve; The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63Cu. A final run under on-line conditions in which the ra…

Nuclear and High Energy PhysicsActive laser medium29.25.Ni 29.25.Rm 41.85.ArPhysics::OpticsLaser pumping[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesAtmospheric-pressure laser ionizationlaw.inventionlaw0103 physical sciencesUltrafast laser spectroscopyddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physics::Atomic Physics010306 general physicsInstrumentationDye laserta114010308 nuclear & particles physicsChemistryLaserIon sourceAtomic physicsAtomic vapor laser isotope separationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Total absorption study of theβdecay of102,104,105Tc

2013

The $\ensuremath{\beta}$-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely ${}^{102,104,105}$Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations.

Nuclear physicsPhysicsNuclear and High Energy PhysicsTotal absorption spectroscopyBeta (plasma physics)Double beta decayIsobaric processAbsorption (logic)Decay heatAtomic physicsPenning trapBeta decayPhysical Review C
researchProduct

Total absorption study of the \beta decay of 102,104,105Tc

2013

The β-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely 102,104,105Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations. peerReviewed

Experimental nuclear physics
researchProduct

Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

2016

Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of natUnatU were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of natUnatU were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. peerReviewed

proton-induced fissionisotopic yieldsNuclear Experiment
researchProduct

Mass measurements of neutron-deficient nuclides close to A=80 with a Penning trap

2006

The masses of 80,81,82,83Y, 83,84,85,86,88Zr and 85,86,87,88Nb have been measured with a typical precision of 7 keV by using the Penning trap setup at IGISOL. The mass of 84Zr has been measured for the first time. These precise mass measurements have improved Sp and QEC values for astrophysically important nuclides. peerReviewed

nukliditnuclides
researchProduct