0000000001131841

AUTHOR

Marie-laure Toussaint

Experimental climate warming alters the relationship between fungal root symbiosis and Sphagnum litter phenolics in two peatland microhabitats

International audience; Belowground interactions between plants and microorganisms are involved in numerous ecosystems processes such as carbon and nutrient cycling. Understanding their responses to on-going climate warming is thus of paramount importance to better predict future ecosystem functioning. We hypothesized that climate warming alters the interactions between Sphagnum litter phenolics and the fungal root symbiosis of the Ericale plant Andromeda polifolia in a Jura mountain peatland (France). We initiate a climate warming treatment (+1°C) in April 2008 in two microhabitats (lawns and hummocks). We measured polyphenolic contents, mycorrhizal and dark septate endophyte (DSE) root co…

research product

Characterisation and distribution of deposited trace elements transported over long and intermediate distances in north-eastern France using Sphagnum peatlands as a sentinel ecosystem

Abstract Trace elements in the form of particulate matter can be transported downwind from their emission sources and may have negative effects on human health and ecosystems. The transport of trace elements is often studied by monitoring their accumulation in mosses. The aim of this study was to characterise and describe the distribution of deposited trace elements transported over long and intermediate distances in north-eastern France, a location far from the main emission sources. We analysed the trace element accumulation in Sphagnum capillifolium in 54 ombrotrophic peatlands distributed in six regions of France (Alps, Jura, Massif Central, Morvan, Rhone corridor and Vosges). The conce…

research product