0000000001133312

AUTHOR

Fabrice Legeai

showing 10 related works from this author

Plant resistance and architecture for protection of pulses against pathogens

2019

Prod 2019-213c BAP GEAPSI INRA; National audience

[SDE] Environmental Sciences[SDV.GEN]Life Sciences [q-bio]/Genetics[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering[SDV]Life Sciences [q-bio][SDV.GEN] Life Sciences [q-bio]/Genetics[SDV.GEN.GA] Life Sciences [q-bio]/Genetics/Animal genetics[SDV.IDA] Life Sciences [q-bio]/Food engineering[SDV] Life Sciences [q-bio][SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics[SDE]Environmental Sciences[SDV.IDA]Life Sciences [q-bio]/Food engineering[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biology[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringComputingMilieux_MISCELLANEOUS
researchProduct

Key Note speaker Plant resistance and architecture for protection of pulses against biotic stresses

2019

Prod 2019-88l BAP GEAPSI INRA DOCT; National audience; Major diseases and pests, such as root rots, ascochyta blights and aphids, are limiting factors to cool season pulse production in many countries worldwide, especially in Europe. In the context of pesticide reduction, plant genetic resistance and architecture are main traits that can be mobilised in breeding for disease and pest management. Knowledge of quantitative resistance to major diseases and pests of pea and faba bean in France has benefited from the development of sequenced genomes and massive SNP markers [1], which have recently been highly valuable to identify candidate genes controlling resistance. Fine mapping and sequencing…

[SDE] Environmental Sciences[SDV.GEN]Life Sciences [q-bio]/Genetics[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process Engineering[SDV]Life Sciences [q-bio]fungifood and beverages[SDV.GEN] Life Sciences [q-bio]/Genetics[SDV.GEN.GA] Life Sciences [q-bio]/Genetics/Animal genetics[SDV.IDA] Life Sciences [q-bio]/Food engineering[SDV] Life Sciences [q-bio][SDV.GEN.GA]Life Sciences [q-bio]/Genetics/Animal genetics[SDE]Environmental Sciences[SDV.IDA]Life Sciences [q-bio]/Food engineering[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process Engineering[SDV.BV] Life Sciences [q-bio]/Vegetal Biology
researchProduct

Plant-phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars

2021

Early Access; International audience; There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbor a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behavior. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here we provide the first evidence of a parasitoid-associated symbiont…

0106 biological sciencesProteomics[SDV]Life Sciences [q-bio]Waspsplant-mediated species interactionsInsect01 natural sciencesParasitoidLaboratory of Entomologymedia_commonTrophic levelparasitoid-associated symbiont2. Zero hunger[SDV.EE]Life Sciences [q-bio]/Ecology environment0303 health sciencesparasitoid‐associated symbiontsbiologyfood and beveragesPE&RChost-parasitoid interaction[SDV] Life Sciences [q-bio][SDV.EE] Life Sciences [q-bio]/Ecology environmentLarvapolydnaviruseOriginal Articleplant‐mediated species interactionsBracovirusfood.ingredientmedia_common.quotation_subjectZoologyContext (language use)Ecological Interactions010603 evolutionary biologyplant-herbivore-microbe interactionsHost-Parasite Interactions03 medical and health sciencesfoodplant-herbivore-microbe interactionGeneticsAnimalsHerbivoryCaterpillarplant‐herbivore‐microbe interactionsEcology Evolution Behavior and Systematics030304 developmental biologyHerbivorefungiOriginal Articlesbiology.organism_classificationLaboratorium voor EntomologiepolydnavirusesPolydnaviridaeparasitoid-associated symbiontsIchnovirusEPShost‐parasitoid interactionplant-mediated species interaction
researchProduct

First extensive characterization of the venom gland from an egg parasitoid: structure, transcriptome and functional role.

2018

The venom gland is a ubiquitous organ in Hymenoptera. In insect parasitoids, the venom gland has been shown to have multiple functions including regulation of host immune response, host paralysis, host castration and developmental alteration. However, the role played by the venom gland has been mainly studied in parasitoids developing in larval or pupal hosts while little is known for parasitoids developing in insect eggs. We conducted the first extensive characterization of the venom of the endoparasitoid Ooencyrtus telenomicida (Vassiliev), a species that develops in eggs of the stink bug Nezara viridula (L.). In particular we investigated the structure of the venom apparatus, its functio…

0106 biological sciences0301 basic medicinePhysiologyGlycosylasesWaspsVenomLaccasesHymenopteraInsectmelanization01 natural sciencesvirulence factorParasitoidTranscriptomePhysiological suppressionLaboratory of EntomologyArthropod Venomsmedia_commonLarvabiologyVirulence factorsPhenotypeNezara viridulalaccazesInsect ProteinsFemaleMelanizationmedia_common.quotation_subjectZoologycomplex mixturesHost-Parasite InteractionsHeteroptera03 medical and health sciencesglycosylasesExocrine GlandsMicroscopy Electron TransmissionAnimalsPeptidaseHost (biology)Laccasefungibiology.organism_classificationLaboratorium voor Entomologiephysiological suppression010602 entomology030104 developmental biologySettore AGR/11 - Entomologia Generale E ApplicatapeptidasesInsect ScienceEPS[SDE.BE]Environmental Sciences/Biodiversity and EcologyPeptidasesTranscriptomeGlycosylaseJournal of insect physiology
researchProduct

The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest

2020

Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture. Results: Using a combination of…

0106 biological sciencesFil·loxeraPhysiology[SDV]Life Sciences [q-bio]Introduced speciesPlant Science01 natural sciencesGenomeGene duplicationsStructural BiologyVitislcsh:QH301-705.5ComputingMilieux_MISCELLANEOUS2. Zero hunger0303 health scienceseducation.field_of_studyHost plant interactionsGenomeEndosymbiosisbiologyfood and beveragesBiological SciencesBiological EvolutionGeneral Agricultural and Biological SciencesRootstockInfectionDaktulosphaira vitifoliaeBiotechnologyResearch ArticlePopulation010603 evolutionary biologyGeneral Biochemistry Genetics and Molecular BiologyHemiptera03 medical and health sciencesGeneticsInsect pestsAnimalsPlagues d'insectesAdaptationBiological invasionsGenomeseducationPhylloxeraEcology Evolution Behavior and Systematics030304 developmental biologyObligateHuman GenomeViticulturaCell Biology15. Life on landbiology.organism_classificationBiologicalEffectorsClimate Actionlcsh:Biology (General)13. Climate actionEvolutionary biologyArthropod genomesPhylloxeraAdaptationIntroduced SpeciesInsectAnimal DistributionDevelopmental Biology
researchProduct

2006

Aphids are the leading pests in agricultural crops. A large-scale sequencing of 40,904 ESTs from the pea aphid Acyrthosiphon pisum was carried out to define a catalog of 12,082 unique transcripts. A strong AT bias was found, indicating a compositional shift between Drosophila melanogaster and A. pisum. An in silico profiling analysis characterized 135 transcripts specific to pea-aphid tissues (relating to bacteriocytes and parthenogenetic embryos). This project is the first to address the genetics of the Hemiptera and of a hemimetabolous insect.

0106 biological sciencesGenetics0303 health sciencesAphidExpressed sequence tagbiologyIn silicomedia_common.quotation_subjectfungifood and beveragesInsectbiochemical phenomena metabolism and nutritionbiology.organism_classification01 natural sciencesHemipteraPisumAcyrthosiphon pisum010602 entomology03 medical and health sciencesDrosophila melanogaster030304 developmental biologymedia_commonGenome Biology
researchProduct

Additional file 1 of The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic p…

2020

Additional file 1: Figures. S1-S22, Table S1-S20, Methods and Results. Figure S1. Mitochondrial genome view of grape phylloxera. Figure S2. Proportion of transposable elements (TE) in the genome. Figure S3. GO terms of phylloxera-specific genes. Figure S4. Enriched GO terms in the phylloxera genome with and without TEs. Figure S5. Gene gain/loss at different nodes or branches. Figure S6. Species phylogenetic tree based on insect genomes and the transcriptomes of Planoccoccus citri and Adelges tsugae. Figure S7. Diagram of the gap-filling and annotation process. Figure S8. Urea cycle in D. vitifoliae and A. pisum. Figure S9. IMD immune pathway in D. vitifoliae.Figure S10. Phylogenetic tree o…

2. Zero hunger
researchProduct

Additional file 1 of The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic p…

2020

Additional file 1: Figures. S1-S22, Table S1-S20, Methods and Results. Figure S1. Mitochondrial genome view of grape phylloxera. Figure S2. Proportion of transposable elements (TE) in the genome. Figure S3. GO terms of phylloxera-specific genes. Figure S4. Enriched GO terms in the phylloxera genome with and without TEs. Figure S5. Gene gain/loss at different nodes or branches. Figure S6. Species phylogenetic tree based on insect genomes and the transcriptomes of Planoccoccus citri and Adelges tsugae. Figure S7. Diagram of the gap-filling and annotation process. Figure S8. Urea cycle in D. vitifoliae and A. pisum. Figure S9. IMD immune pathway in D. vitifoliae.Figure S10. Phylogenetic tree o…

2. Zero hunger
researchProduct

The antennal transcriptome of a moth

2010

International audience

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]antennal transcriptome[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]moth[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]ComputingMilieux_MISCELLANEOUS
researchProduct

Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges

2017

International audience; Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world’s worst agricultural pests. This insect is polyphagous while the majority of other lepidopteran herbivores are specialist. It consists of two morphologically indistinguishable strains (“C” and “R”) that have different host plant ranges. To describe the evol…

Crops AgriculturalGenome Insectlcsh:Rfungilcsh:MedicineSpodopteraAdaptation PhysiologicalArticleSpecies SpecificityLarvaAnimalslcsh:QHerbivory[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]lcsh:Science[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]
researchProduct