0000000001135393
AUTHOR
Pier Paolo Di Fiore
Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma
Under homeostatic conditions, mature epithelia are locked in a kinetically-silent, jammed state. During wound repair or branching morphogenesis epithelia must unjam and acquire liquid-like properties. These events might be recapitulated in the transition from in situ to invasive cancer stages. How cells control this transition and how biologically relevant it is, however, remains unclear. Recently, we showed that altering RAB5A levels, a master regulator of endosomal trafficking, is sufficient to re-awaken motility in jammed epithelia, through ill-defined, endocytic-sensitive biochemical pathways. Here, we show that RAB5A promotes non-clathrin-dependent internalization of epidermal growth f…
Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver
Metastasis is facilitated by the formation of a "premetastatic niche," which is fostered by primary tumor-derived factors. Colorectal cancer (CRC) metastasizes mainly to the liver. We show that the premetastatic niche in the liver is induced by bacteria dissemination from primary CRC. We report that tumor-resident bacteria Escherichia coli disrupt the gut vascular barrier (GVB), an anatomical structure controlling bacterial dissemination along the gut-liver axis, depending on the virulence regulator VirF. Upon GVB impairment, bacteria disseminate to the liver, boost the formation of a premetastatic niche, and favor the recruitment of metastatic cells. In training and validation cohorts of C…
Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma.
During wound repair, branching morphogenesis and carcinoma dissemination, cellular rearrangements are fostered by a solid-to-liquid transition, known as unjamming. The biomolecular machinery behind unjamming and its pathophysiological relevance remain, however, unclear. Here, we study unjamming in a variety of normal and tumorigenic epithelial two-dimensional (2D) and 3D collectives. Biologically, the increased level of the small GTPase RAB5A sparks unjamming by promoting non-clathrin-dependent internalization of epidermal growth factor receptor that leads to hyperactivation of the kinase ERK1/2 and phosphorylation of the actin nucleator WAVE2. This cascade triggers collective motility effe…