0000000001137138

AUTHOR

Tuuli Nissinen

Effects of insulin deficiency on exercise-induced acute responses in the regulation of fatty acid oxidation in mouse gastrocnemius muscles

Insulin is a hormone that plays an important role in the regulation of the metabolism of all the main nutrients. Its main function is to stimulate glucose uptake and disposal or utilization by the cells and thus to decrease blood glucose concentration. However, it also inhibits breakdown of proteins and lipids and promotes their synthesis. Type 1 diabetes is a disease in which insulin secretion is impaired because of destruction of pancreatic β-cells. It is characterized by hyperglycemia and increased reliance on fat oxidation. This is seen also as altered gene expression patterns. The purpose of this study was to look into the effects of insulin deficiency on exercise-induced acute respons…

research product

Muscle and serum metabolomes are dysregulated in colon-26 tumor-bearing mice despite amelioration of cachexia with activin receptor type 2B ligand blockade

Cancer-associated cachexia reduces survival, which has been attenuated by blocking the activin receptor type 2B (ACVR2B) ligands in mice. The purpose of this study was to unravel the underlying physiology and novel cachexia biomarkers by use of the colon-26 (C26) carcinoma model of cancer cachexia. Male BALB/c mice were subcutaneously inoculated with C26 cancer cells or vehicle control. Tumor-bearing mice were treated with vehicle (C26+PBS) or soluble ACVR2B either before (C26+sACVR/b) or before and after (C26+sACVR/c) tumor formation. Skeletal muscle and serum metabolomics analysis was conducted by gas chromatography-mass spectrometry. Cancer altered various biologically functional groups …

research product

Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses.

Background Cancer cachexia increases morbidity and mortality, and blocking of activin receptor ligands has improved survival in experimental cancer. However, the underlying mechanisms have not yet been fully uncovered. Methods The effects of blocking activin receptor type 2 (ACVR2) ligands on both muscle and non‐muscle tissues were investigated in a preclinical model of cancer cachexia using a recombinant soluble ACVR2B (sACVR2B‐Fc). Treatment with sACVR2B‐Fc was applied either only before the tumour formation or with continued treatment both before and after tumour formation. The potential roles of muscle and non‐muscle tissues in cancer cachexia were investigated in order to understand th…

research product