0000000001137140

AUTHOR

Fabio Penna

showing 10 related works from this author

A Periodic Diet that Mimics Fasting Promotes Multi-System Regeneration, Enhanced Cognitive Performance, and Healthspan

2015

SummaryProlonged fasting (PF) promotes stress resistance, but its effects on longevity are poorly understood. We show that alternating PF and nutrient-rich medium extended yeast lifespan independently of established pro-longevity genes. In mice, 4 days of a diet that mimics fasting (FMD), developed to minimize the burden of PF, decreased the size of multiple organs/systems, an effect followed upon re-feeding by an elevated number of progenitor and stem cells and regeneration. Bi-monthly FMD cycles started at middle age extended longevity, lowered visceral fat, reduced cancer incidence and skin lesions, rejuvenated the immune system, and retarded bone mineral density loss. In old mice, FMD c…

MaleAbdominal Fat; Adult; Aged; Aging; Animals; Body Weight; Cardiovascular Diseases; Diet; Female; Humans; Male; Mice; Mice Inbred C57BL; Middle Aged; Neoplasms; Neurogenesis; Pilot Projects; Psychomotor Performance; Regeneration; Saccharomyces cerevisiae; Young Adult; Cognition; Fasting; LongevityAgingPhysiologyPilot ProjectsMiceCognitionNeoplasmsCardiovascular DiseaseSettore MED/49 - Scienze Tecniche Dietetiche Applicatemedia_common2. Zero hungerNeurogenesisLongevityFastingMiddle Aged3. Good healthCardiovascular DiseasesFemaleStem cellHumanAdultmedicine.medical_specialtyNeurogenesismedia_common.quotation_subjectLongevityAbdominal FatSaccharomyces cerevisiaeBiologyArticleYoung AdultImmune systemInternal medicineDiabetes mellitusmedicineAnimalsHumansRegenerationPilot ProjectAdverse effectCell Biology; Molecular Biology; PhysiologyMolecular BiologyAgedAnimalBody WeightCell Biologymedicine.diseaseMiddle ageDietMice Inbred C57BLEndocrinologyCancer cellNeoplasmNeurogenesiPsychomotor Performance
researchProduct

Targeting the Activin Receptor Signaling to Counteract the Multi-Systemic Complications of Cancer and Its Treatments

2021

Muscle wasting, i.e., cachexia, frequently occurs in cancer and associates with poor prognosis and increased morbidity and mortality. Anticancer treatments have also been shown to contribute to sustainment or exacerbation of cachexia, thus affecting quality of life and overall survival in cancer patients. Pre-clinical studies have shown that blocking activin receptor type 2 (ACVR2) or its ligands and their downstream signaling can preserve muscle mass in rodents bearing experimental cancers, as well as in chemotherapy-treated animals. In tumor-bearing mice, the prevention of skeletal and respiratory muscle wasting was also associated with improved survival. However, the definitive proof tha…

tumorCachexiaActivin ReceptorsActivin Receptors Type IIMyostatinReviewchemotherapymulti-organType IIsurvivalCachexiaNeoplasmsmedicineRespiratory muscleHumansActivins; Cancer cachexia; Chemotherapy; Mortality; Multi-organ; Muscle wasting; Myostatin; Survival; Tumor; Activin Receptors Type II; Cachexia; Humans; Neoplasms; Signal Transduction; Survival Analysislcsh:QH301-705.5Wastingsoluviestintäbiologysyöpähoidotbusiness.industryactivinsCancerSkeletal musclemuscle wastingGeneral MedicineActivin receptormedicine.diseaseSurvival AnalysismortalityBlockademedicine.anatomical_structurelcsh:Biology (General)myostatinCancer researchbiology.proteinproteiinitmedicine.symptombusinesshenkiinjääminenlihassurkastumasairaudetSignal Transductioncancer cachexia
researchProduct

Moderate Exercise Improves Experimental Cancer Cachexia by Modulating the Redox Homeostasis

2019

Cachexia is a debilitating syndrome that complicates the management of cancer patients. Muscle wasting, one of the main features of cachexia, is associated with hyper-activation of protein degradative pathways and altered mitochondrial function that could both result from impaired redox homeostasis. This study aimed to investigate the contribution of oxidative stress to cancer-induced cachexia in the presence or in the absence of moderate exercise training. Mice bearing the colon C26 carcinoma, either sedentary or exercised, were used. The former showed muscle wasting and redox imbalance, with the activation of an antioxidant response and with upregulation of markers of proteasome-dependent…

0301 basic medicineCancer Researchmedicine.medical_specialtyMitochondrionProtein degradationmedicine.disease_causelcsh:RC254-282ArticleMuscle wastingCachexia03 medical and health sciences0302 clinical medicineInternal medicineMitophagyAutophagymedicineChemotherapyWastingchemistry.chemical_classificationReactive oxygen speciesbusiness.industryAutophagylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseAutophagy; Chemotherapy; Mitochondria; Muscle wasting; Oxidative stress; Oncology; Cancer ResearchMitochondria030104 developmental biologyEndocrinologyOncologychemistryOxidative stress030220 oncology & carcinogenesismedicine.symptombusinessOxidative stressCancers
researchProduct

Moderate exercise in mice improves cancer plus chemotherapy-induced muscle wasting and mitochondrial alterations

2019

Cancer cachexia is a multifactorial syndrome characterized by anorexia, body wasting, and muscle and adipose tissue loss, impairing patient's tolerance to anticancer treatments and survival. The aim of the present study was to compare the effects induced in mice by tumor growth alone (C26) or in combination with chemotherapy [C26 oxaliplatin and 5-fluorouracil (oxfu)] and to evaluate the potential of moderate exercise. Oxfu administration to C26 mice exacerbated muscle wasting and triggered autophagy or mitophagy, decreased protein synthesis, and induced mitochondrial alterations. Exercise in C26 oxfu mice counteracted the loss of muscle mass and strength, partially rescuing autophagy and m…

0301 basic medicineMaleCachexiamedicine.medical_treatmentPGC-1αMitochondrionliikuntaBiochemistryMice0302 clinical medicineNeoplasmsMitophagyautophagy; cancer cachexia; mitochondria; PGC-1α; survival; Biotechnology; Biochemistry; Molecular Biology; Geneticsta315WastingMice Inbred BALB C3. Good healthmitochondriaMuscular AtrophyFemalemedicine.symptomBiotechnologycancer cachexiamedicine.medical_specialtyautophagyAntineoplastic AgentsAnorexiasurvivalCachexia03 medical and health sciencesInternal medicinePhysical Conditioning AnimalGeneticsmedicineAnimalsMuscle SkeletalMolecular BiologyChemotherapysyöpähoidotbusiness.industryAutophagyCancermedicine.diseaseta3122030104 developmental biologyEndocrinologyQuality of Lifekoe-eläinmallitbusinessEnergy Metabolismlihassurkastumasairaudet030217 neurology & neurosurgeryFASEB Journal
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

2016

Seuls les 100 premiers auteurs dont les auteurs INRA ont été entrés dans la notice. La liste complète des auteurs et de leurs affiliations est accessible sur la publication.; International audience; In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues…

[SDV]Life Sciences [q-bio]autophagosomeReview Articleddc:616.07stressstreLC3MESH: AnimalsSettore MED/49 - Scienze Tecniche Dietetiche ApplicateSettore BIO/06 - Anatomia Comparata E Citologiachaperone-mediated autophagyComputingMilieux_MISCELLANEOUSSettore BIO/11Pharmacology. TherapySettore BIO/13standards [Biological Assay]autolysosomeMESH: Autophagy*/physiologylysosomemethods [Biological Assay]Biological AssaySettore BIO/17 - ISTOLOGIAErratumHumanBiochemistry & Molecular BiologySettore BIO/06physiology [Autophagy]Chaperonemediated autophagy[SDV.BC]Life Sciences [q-bio]/Cellular BiologyNOautophagy guidelines molecular biology ultrastructureautolysosome; autophagosome; chaperone-mediated autophagy; flux; LC3; lysosome; macroautophagy; phagophore; stress; vacuoleMESH: Biological Assay/methodsMESH: Computer Simulationddc:570Autolysosome Autophagosome Chaperonemediated autophagy Flux LC3 Lysosome Macroautophagy Phagophore Stress VacuoleAutophagyAnimalsHumansComputer SimulationSettore BIO/10ddc:612BiologyphagophoreMESH: HumansvacuoleAnimalLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole; Animals; Biological Assay; Computer Simulation; Humans; Autophagy0601 Biochemistry And Cell BiologyfluxmacroautophagyMESH: Biological Assay/standards*Human medicineLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole
researchProduct

NAD+ repletion with niacin counteracts cancer cachexia

2023

AbstractCachexia is a debilitating wasting syndrome and highly prevalent comorbidity in cancer patients. It manifests especially with energy and mitochondrial metabolism aberrations that promote tissue wasting. We recently identified nicotinamide adenine dinucleotide (NAD+) loss to associate with muscle mitochondrial dysfunction in cancer hosts. In this study we confirm that depletion of NAD+ and downregulation of Nrk2, an NAD+ biosynthetic enzyme, are common features of severe cachexia in different mouse models. Testing NAD+ repletion therapy in cachectic mice reveals that NAD+ precursor, vitamin B3 niacin, efficiently corrects tissue NAD+ levels, improves mitochondrial metabolism and amel…

aineenvaihduntahäiriötMultidisciplinaryenergy metabolismcancerGeneral Physics and AstronomysyöpätauditGeneral Chemistrymetabolic diseasesaineenvaihduntaGeneral Biochemistry Genetics and Molecular Biology
researchProduct

Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses.

2018

Background Cancer cachexia increases morbidity and mortality, and blocking of activin receptor ligands has improved survival in experimental cancer. However, the underlying mechanisms have not yet been fully uncovered. Methods The effects of blocking activin receptor type 2 (ACVR2) ligands on both muscle and non‐muscle tissues were investigated in a preclinical model of cancer cachexia using a recombinant soluble ACVR2B (sACVR2B‐Fc). Treatment with sACVR2B‐Fc was applied either only before the tumour formation or with continued treatment both before and after tumour formation. The potential roles of muscle and non‐muscle tissues in cancer cachexia were investigated in order to understand th…

MaleTUMOR-BEARING MICElcsh:Diseases of the musculoskeletal systemCachexiaprotein synthesisActivin Receptors Type IIMDSCphysical activityAcute phase responseKaplan-Meier EstimateACTIVATIONActivinMiceNeoplasmsOrthopedics and Sports MedicineTOR Serine-Threonine Kinasesactivinlcsh:Human anatomyII RECEPTORSRecombinant ProteinsProtein TransportLivermyostatinPROTEIN-SYNTHESISSKELETAL-MUSCLECytokinessyöpätauditInflammation MediatorsACUTE-PHASE RESPONSE3122 CancersINHIBITIONlcsh:QM1-695acute phase responsePhysiology (medical)Cell Line TumorAnimalsHumansMuscle SkeletalActivin; Acute phase response; MDSC; Myostatin; Physical activity; Protein synthesis; Orthopedics and Sports Medicine; Physiology (medical)Physical activityMyeloid-Derived Suppressor CellsMyostatinXenograft Model Antitumor AssaysDisease Models AnimalACTIVIN-APHYSICAL-ACTIVITY3121 General medicine internal medicine and other clinical medicineproteiinitEXPERIMENTAL CANCER CACHEXIAlcsh:RC925-935Protein synthesislihassurkastumasairaudetBiomarkersSpleenJournal of cachexia, sarcopenia and muscle
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct

Erratum

2016

Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Ab…

0301 basic medicineSettore BIO/06biologyCell Biology[SDV.BC]Life Sciences [q-bio]/Cellular Biologybiology.organism_classificationCell biologyInterpretation (model theory)03 medical and health sciencesArama030104 developmental biologyMolecular BiologyHumanitiesComputingMilieux_MISCELLANEOUS
researchProduct