0000000001137181

AUTHOR

Monika Weymuth

showing 1 related works from this author

A posteriori modelling-discretization error estimate for elliptic problems with L ∞-Coefficients

2017

We consider elliptic problems with complicated, discontinuous diffusion tensor A0. One of the standard approaches to numerically treat such problems is to simplify the coefficient by some approximation, say Aϵ, and to use standard finite elements. In [19] a combined modelling-discretization strategy has been proposed which estimates the discretization and modelling errors by a posteriori estimates of functional type. This strategy allows to balance these two errors in a problem adapted way. However, the estimate of the modelling error was derived under the assumption that the difference A0 - Aϵ becomes small with respect to the L∞-norm. This implies in particular that interfaces/discontinui…

10123 Institute of Mathematics510 Mathematicselliptic regularity2604 Applied Mathematicsmodel simplification2612 Numerical Analysis2605 Computational Mathematicsa posteriori error estimation
researchProduct