0000000001137851

AUTHOR

Thierry Valet

showing 2 related works from this author

Current-driven periodic domain wall creation in ferromagnetic nanowires

2016

We predict the electrical generation and injection of domain walls into a ferromagnetic nano-wire without the need of an assisting magnetic field. Our analytical and numerical results show that above a critical current $j_{c}$ domain walls are injected into the nano-wire with a period $T \sim (j-j_{c})^{-1/2}$. Importantly, domain walls can be produced periodically even in a simple exchange ferromagnet with uniaxial anisotropy, without requiring any standard "twisting" interaction like Dzyaloshinskii-Moriya or dipole-dipole interactions. We show analytically that this process and the period exponents are universal and do not depend on the peculiarities of the microscopic Hamiltonian. Finall…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsNanowireFOS: Physical sciences02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldCondensed Matter::Materials Sciencesymbols.namesakeFerromagnetismFerromagnetic nanowiresMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencessymbolsCritical current010306 general physics0210 nano-technologyAnisotropyHamiltonian (quantum mechanics)Physical Review B
researchProduct

Complete mapping of the spin-wave spectrum in vortex state nano-disk

2016

© 2016 American Physical Society.We report a study on the complete spin-wave spectrum inside a vortex-state nanodisk. Transformation of this spectrum is continuously monitored as the nanodisk becomes gradually magnetized by a perpendicular magnetic field and encounters a second-order phase transition to the uniformly magnetized state. This reveals the bijective relationship that exists between the eigenmodes in the vortex state and the ones in the saturated state. It is found that the gyrotropic mode can be continuously viewed as a uniform phase precession, which uniquely softens (its frequency vanishes) at the saturation field to transform above into the Kittel mode. By contrast, the other…

Physics[PHYS]Physics [physics]Phase transitionCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsFOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesVortex stateSpin wave0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)BijectionPerpendicular magnetic field010306 general physics0210 nano-technologySaturation (chemistry)
researchProduct