0000000001141522

AUTHOR

J. -P Wolf

Experimental investigation of the optical Kerr effect at large laser intensity: impact on the propagation of a short and intense laser pulse

Talk given by O. Faucher; International audience

research product

Higher-order Kerr terms allow ionization-free filamentation in gases

Talk given by J. Kasparian; International audience; Higher-order nonlinear indices, rather than plasma, provide the main defocusing contribution to filamentation in gases at 800 nm. Developing generalized Miller formulae, we discuss the generality of this as a function of the laser wavelength

research product

Observation d'effets Kerr d'ordres élevés (HOKE) dans les gaz

Talk given by O. Faucher; National audience

research product

Higher-order Kerr terms allow ionization-free filamentation in gases

International audience; We show that higher-order nonlinear indices (n4 , n6 , n8 , n10) provide the main defocusing contribution to self-channeling of ultrashort laser pulses in air and Argon at 800 nm, in contrast with the previously accepted mechanism of filamentation where plasma was considered as the dominant defocusing process. Their consideration allows to reproduce experimentally observed intensities and plasma densities in self-guided filaments.

research product

Negative and positive Kerr nonlinearity of air calibrated with transient molecular alignment

Talk given by O. Faucher; International audience; Nonlinear electronic Kerr index of the major air constituents has been measured up to high order terms using transient molecular alignment as a reference. Sign reversal associated to negative nonlinearity is observed above a pulse intensity of 26 TW/cm^.2

research product

High-order Kerr nonlinearity of air calibrated with transient molecular alignment

Talk given by O. Faucher; International audience; Nonlinear electronic Kerr index of the major air constituents has been measured up to high order terms using transient molecular alignment as a reference. Sign reversal associated to negative nonlinearity is observed above a pulse intensity of 26 TW/cm^2.

research product