0000000001142745

AUTHOR

Monica Höfte

showing 4 related works from this author

Foreword

2007

0106 biological sciencesbusiness.industryfungifood and beverages04 agricultural and veterinary sciencesPlant ScienceHorticultureBiologyRhizobacteria01 natural sciencesBiotechnology040103 agronomy & agriculture0401 agriculture forestry and fisheriesbusinessAgronomy and Crop Science010606 plant biology & botanyEuropean Journal of Plant Pathology
researchProduct

Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics

2016

Bacteria of the genus Pseudomonas occupy diverse environments. The Pseudomonas fluorescens group is particularly well-known for its plant-beneficial properties including pathogen suppression. Recent observations that some strains of this group also cause lethal infections in insect larvae, however, point to a more versatile ecology of these bacteria. We show that 26 P. fluorescens group strains, isolated from three continents and covering three phylogenetically distinct sub-clades, exhibited different activities toward lepidopteran larvae, ranging from lethal to avirulent. All strains of sub-clade 1, which includes Pseudomonas chlororaphis and Pseudomonas protegens, were highly insecticidal…

0301 basic medicineBioinformaticsVirulencePseudomonas fluorescensBiologyMicrobiologyHost SpecificityMicrobiology03 medical and health sciencesPseudomonas protegensMicrobial ecologyPhylogeneticsPseudomonasAnimalsEcology Evolution Behavior and SystematicsPhylogenyComparative genomicsGenomeVirulencePseudomonasfungiGenomics570: BiologiePlantsPseudomonas chlororaphisbiology.organism_classification3. Good healthLepidoptera030104 developmental biologyLarvainternationalOriginal Article
researchProduct

New perspectives and approaches in plant growth-promoting rhizobacteria research

2007

International audience; In the context of increasing international concern for food and environmental quality, use of Plant Growth-Promoting Rhizobacteria (PGPR) for reducing chemical inputs in agriculture is a potentially important issue. PGPR are root-colonizing bacteria that exert beneficial effects on plant growth and development, but they can be also employed in the control of plant pathogens, for enhancing the efficiency of fertilizers, and for degrading xenobiotic compounds. This book provides an update by renowned international experts on the most recent advances in the ecology of these important bacteria, the application of innovative methodologies for their study, their interactio…

[SDE] Environmental Sciencesplant growth-promoting rhizobacteriaCONTROL OF PLANT PATHOGENSPLANT GROWTH AND DEVELOPMENTcontrol of plants pathogens[SDV]Life Sciences [q-bio]fungieducationfood and beveragesplant growthROOT-COLONIZING BACTERIAINTERACTION WITH THE HOST PLANT[SDV] Life Sciences [q-bio]PLANT GROWTH-PROMOTING RHIZOBACTERIA(PHPPR)[SDE]Environmental SciencesEFFICIENCY OF FERTILIZERSplant developmentRELATION PLANTE-MICROORGANISMEPOTENTIAL APPLICATION IN AGRICULTUREapplication in agriculture
researchProduct

Antimicrobial and Insecticidal: Cyclic Lipopeptides and Hydrogen Cyanide Produced by Plant-Beneficial Pseudomonas Strains CHA0, CMR12a, and PCL1391 C…

2017

Particular groups of plant-beneficial fluorescent pseudomonads are not only root colonizers that provide plant disease suppression, but in addition are able to infect and kill insect larvae. The mechanisms by which the bacteria manage to infest this alternative host, to overcome its immune system, and to ultimately kill the insect are still largely unknown. However, the investigation of the few virulence factors discovered so far, points to a highly multifactorial nature of insecticidal activity. Antimicrobial compounds produced by fluorescent pseudomonads are effective weapons against a vast diversity of organisms such as fungi, oomycetes, nematodes, and protozoa. Here, we investigated whe…

Gac regulatory systemPAENIBACILLUS-LARVAEsecondary metabolitesfungiPseudomonas protegensBiology and Life SciencesBLACK ROOT-ROTPseudomonas chlororaphisPseudomonas fluorescensMicrobiologyinsecticidal activityBIOCONTROLsessilinorfamide; sessilin; Gac regulatory system; Pseudomonas fluorescens; Pseudomonas protegens; Pseudomonas chlororaphis; secondary metabolites; insecticidal activityDROSOPHILA-MELANOGASTERorfamideFLUORESCENS CHA0GRAM-NEGATIVE BACTERIAGNOTOBIOTIC CONDITIONSENHANCED ANTIBIOTIC PRODUCTIONBIOLOGICAL-CONTROLOriginal Research
researchProduct